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Abstract

The history of financial markets over the past century points to the stylised fact that

markets build up to a peak and then crash. Many of the standard methods for risk

estimation and modelling of financial time series rely on the linear stochastic

modelling framework. Under this approach, the interaction of market participants

are assumed to be independent and, when taken on aggregate, cancel each other out.

In order to better capture the build-up of risk in the financial system, the methods

applied in this thesis allow for endogenous dynamical behaviour, caused by the

complex interaction of market participants as they react and adapt to the trends and

patterns they create at an aggregate level. Endogenous dynamics can lead to the

build-up of instabilities in a complex system, pushing it closer to a critical threshold.

When the critical point is reached, the system may abruptly switch between alternate

equilibria. In effect, a regime shift occurs in the system.

We investigate whether we can detect certain universal features of complex systems

approaching a regime shift to develop early warning indicators of financial crises.

Focusing on sovereign bond and stock market time series in the periods leading up to

financial crises, the thesis proposes a number of potential indicators of risk building

up in the financial system. In particular, we present evidence of nonlinear

dependence structures, critical slowing down, and changing network topology in

financial markets in the periods preceding financial crises.

Taken on aggregate, the results presented in this thesis indicate that moving beyond

the linear stochastic framework and applying methods that can capture complex

interactions of market participants, and the resultant emergent patterns they create,

adds significant value in the development of early warning signals for financial

crises.
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Chapter 1

Introduction

1.1 The Linear Stochastic Modelling Framework

The recent global financial crisis and Eurozone sovereign debt crisis highlighted

deficiencies in common risk and economic modelling techniques which were

prevalent amongst market participants. The root causes of the global financial crisis

have been well documented1. Amongst the factors which led to the increased

fragility of the financial system were: low interest rates leading to booms in housing

and asset markets; deregulation of financial markets and institutions; financial

innovation, whose risks were misunderstood by market participants, increasing the

size, complexity, opacity and interconnectedness of the global financial system; and

increased leverage funded by short term debt. The U.S. subprime crisis set into effect

a cycle of mark to market losses and fire-sale of securitised products, driven by

similar trading strategies followed by financial institutions across the globe. The

opacity of balance sheets meant lenders were uncertain of the ability of

counterparties to repay their debt and short term funding sources dried up. A credit

crunch ensued with severe spill-over effects for the real economy.

The decade leading up to the financial crisis saw a huge increase in the use of

mathematical risk and pricing models. Physicists, engineers, mathematicians and

computer scientist were employed in large numbers as quantitative analysts or

"quants". There was a belief that as banks’ returns were being boosted by larger

balance sheets, financed by increased leverage, risks were reduced by advances in

1For a review see Taylor (2009), Mishkin (2010) and Karmin and Pounder DeMarco (2010).
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Chapter 1. Introduction

risk management (Haldane, 2009). However, the mathematical rigour of the models

concealed the weaknesses of the assumptions underlying them (Colander et al., 2009).

In order to facilitate modelling, quants relied on the hypothesis that most market

data follow a stochastic process, which depends only on past observations of itself

and other market data (Danıelsson, 2002). This hypothesis assumes that there are a

very large number of market participants and that on aggregate their actions are

random and cannot influence the market. This assumption, however, falls foul of the

Lucas (1976) critique: that changes in policy will systematically alter the structure of

econometric models. With advances in financial risk modelling and, in particular, the

rise in popularity of Value at Risk (VaR) modelling frameworks, financial institutions

began following similar risk management strategies. Under the Basel II capital

accord, VaR was placed as the preferred model for market risk modelling. While

institutions still had the flexibility to devise the precise nature of their models, a 99%

10 day VaR was set as standard (BCBS, 2004).

The implications of these developments were not fully appreciated. During times of

increased financial market volatility VaR limits would be breached and portfolios

rebalanced, potentially by large numbers of banks and investment firms

simultaneously. Resultant positive feedback loops would exacerbate market

movements, with declines in asset prices of magnitudes deemed virtually impossible

under the assumptions of the models. Thus, the very act of modelling market risk

changes the distributional properties of risk (Danıelsson, 2002). This flawed

assumption contributed to the “black swan" events outlined in (Taleb, 2007).

The individualistic approach to risk management, which takes the behaviour of

market participants as given (Colander et al., 2009), failed to recognise the complex

nature of the financial system. Interactions between economic agents at a micro level

can lead to emergent phenomena at a macro level that are exceedingly difficult to

predict (Solomon and Golo, 2014). In this sense, financial institutions and regulators

alike were guilty of the “fallacy of composition". They implemented policies based

on the assumption that the financial system is safe if each financial institution is safe.

This faulty assumption is implicitly applied in a stochastic risk modelling or pricing

framework characterised by the central limit theorem, where the law of large

2



1.2. The Stylised Facts of Financial Time Series

numbers means that interactions cancel each other out on average and lead to a

smooth bell curve (Zigrand, 2014). During the period 1998 to 2007, which Haldane

(2009) refers to as the golden decade, this approach to risk management ignored the

build-up of systemic risk caused by the complex interaction of agents.

Another key assumption that was inherent in risk modelling during the golden

decade was, that the basic statistical properties of financial data are broadly the same

during stable periods as they are during crises (Danıelsson, 2002). Risk modellers

failed to take into account that financial and economic systems are characterised by

non-stationarities. The distribution of outcomes during crises display fatter tails,

skewness, and increased correlation across asset classes and markets when compared

with stable periods. The implications of the assumption of stationarity was most

acutely felt in the pricing of credit derivatives and mortgage backed securities.

Simulation methods were used, calibrated using historical data on the distribution of

losses. The illusion of control provided by mathematical modelling meant that

financial institutions and ratings agencies believed that market data from the golden

decade was representative of potential future losses. Neglecting to incorporate the

possibility of non-stationarities meant that the risks associated with these products

were seriously underestimated. In the words of Reinhart and Rogoff (2009), they

believed that “this time is different".

1.2 The Stylised Facts of Financial Time Series

The narrative for the failure to detect the build of systemic risk in the months and

years preceding the financial crisis has its roots in linear stochastic risk modelling

methodologies. In financial time series analysis, it is commonly assumed that

financial asset prices follow a random walk process, where the current price is equal

to the price in the previous time period plus a shock variable. A drift variable is also

often included to capture the tendency for prices to trend upwards for prolonged

periods of time. This can be represented as follows:

Pt = µ+ Pt−1 + εt, (1.1)

3



Chapter 1. Introduction

where Pt is the price at time t, µ is the drift term and εt is a independently and

identically distributed (IID) error term, with mean 0 and variance σ2. This means that

changes in price are uncorrelated over time (Campbell, Lo, and MacKinlay, 1997). As

well as being IID, the error term is commonly assumed to be normally distributed.

The random walk process described above is non-stationary in both the mean and

variance. Using the assumption of the random walk leads to a non-zero probability

that the price will be negative, therefore we use the log of Pt:

ln(Pt) = µ+ ln(Pt−1) + εt (1.2)

or,

rt = µ+ εt, (1.3)

where rt is the log-returns, and approximates the continuously compounded rate of

return. For sufficiently small ∆t, the log-returns are approximately equal to the

simple returns for a time series. Equation 1.3 implies that the log-returns are normally

distributed, with mean 0 and variance σ2 (Campbell, Lo, and MacKinlay, 1997).

One important implication of IID error terms is that of stationarity. A stochastic

process is stationary if, for every time increment h, the joint distribution

(xt1 , xt2 , ..., xtN ) is the same as the joint distribution (xt1+h, xt2+h, ..., xtN+h)

(Wooldridge, 2012). However, a somewhat weaker assumption of covariance

stationarity generally suffices for statistical inference and risk modelling. A

covariance stationary stochastic process has a constant mean, constant variance, and

the covariance between xt and xt+h depends only on t and not on h.

While a linear stochastic framework provides a parsimonious and analytically

tractable methodology for modelling financial markets, a number of stylised facts2

have emerged which indicate that such a framework may not be appropriate for

2Stylised facts are those based on empirical observation of assets across multiple markets, regions and
time periods.
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1.2. The Stylised Facts of Financial Time Series

financial market analysis in all circumstances (see Cont (2001) and Jondeau, Poon,

and Rockinger (2007) for an overview). A number of these facts are described below.

1. Financial returns exhibit insignificant serial correlation except at high, intra-day

time frequencies.

2. The unconditional returns distribution has fatter tails than expected from a

normal distribution, with power law or Pareto-like tails, and a tail index

between 2 and 5. This indicates that the unconditional distribution does not

follow a normal distribution.

3. The unconditional distribution of returns is negatively skewed with an

asymmetry between gains and losses. This means that large draw-downs occur

more frequently than large gains.

4. Financial returns exhibit intermittency, or irregular bursts of activity. This

intermittency is largely related to volatility clustering (serial correlation in

volatility).

5. After correcting for volatility clustering, the conditional distribution of returns

continues to exhibit fat tails and negative skewness.

6. The autocorrelation function of absolute returns exhibits a power law decay,

indicating long range dependence.

7. Leverage effects are present in financial returns, meaning that negative returns

increase volatility more than positive returns.

8. Returns exhibit time varying cross-correlation, with increases in correlation

detected during times of increased volatility.

In this section we present a number of the most salient stylised facts of financial time

series, briefly discussing their implications for financial modelling. The purpose of

the section is to highlight the shortcomings of the linear stochastic framework for

modern risk modelling. While we focus on stock market returns, due to the

availability of high frequency data, the nature of the stylised facts are such that they

apply across multiple asset classes.

5



Chapter 1. Introduction

1.2.1 Aggregate Normality

A normal distribution has the useful property that it is entirely described by its first

two moments, mean and variance. The probability density function for the normal

distribution is given as follows,

P (x) =
1

σ
√

2π
e−(x−µ)2/(2σ2), (1.4)

where µ is the mean of the distribution and σ is the standard deviation, or square root

of the variance. When presented with an empirical time series of financial returns, it

is often useful to calculate the first four moments of the empirical distribution.

µ̂ =
1

T

T∑
t=1

rt, (1.5)

where µ̂ is the sample mean and is a measure of the central tendency of the empirical

distribution.

σ̂2 =
1

T − 1

T∑
t=1

(rt − µ̂)2, (1.6)

where σ̂2 is the sample variance and is a measure of dispersion or spread of the

empirical distribution.

ŝ =
1

T

T∑
t=1

(rt − µ̂)

σ̂2

3

, (1.7)

where ŝ is the sample skewness and is a measure of asymmetry of the distribution.

Skewness is zero for a normal distribution due to asymptotic symmetry.

k̂ =
1

T

T∑
t=1

(rt − µ̂)

σ̂2

4

, (1.8)

6



1.2. The Stylised Facts of Financial Time Series

where k̂ is the sample kurtosis and is a measure of the fatness of tails of the empirical

distribution. The kurtosis of a normal distribution is 3 so we generally express the

statistic in terms of excess kurtosis (k̂ − 3).

One of the stylised facts of financial data is that of aggregate normality. This result is

highlighted in Figure 1.1, which displays the standardised distribution of log-returns

of Exxon Mobil stock prices (XOM) for time increments of 5 minutes to 1 month.

Standardisation of the distribution involves subtracting µ̂ and then dividing by σ̂.

The standard normal distribution is included in Figure 1.1 for comparative purposes.

It is clear from the returns distribution that higher frequency returns do not follow a

normal distribution, with a leptokurtic distribution3 being evident. Table 1.1

provides the empirical moments of the returns’ distributions as well as the

Jarque-Bera test statistic, which is calculated as follows:

JB = n

[
ŝ2

6
+

(k̂ − 3)2

24

]
, (1.9)

where JB is the Jarque-Bera test statistic and has an asymptotic chi-square

distribution with two degrees of freedom. A test statistic of 0 indicates normally

distributed data. The skewness and kurtosis for all return frequencies display

non-normal properties, with negative skewness and fat tails. However, the

distribution gets closer to the normal distribution as we lower the frequency of the

returns. The implication of this result is that statistics and risk models estimated

using the assumption of normally distributed returns will underestimate the fraction

of returns in the left tail of the returns distribution.

TABLE 1.1: Moments and Jarque-Bera test Statistic of XOM returns dis-
tribution (Jan 1999–Dec 2011)

Series Mean Std. Dev. Skewness Kurtosis JB Test Statistic
5 min 0.00 .002 -6.8 774.94 6,327,523,690
20 min 0.00 0.004 -3.92 238.50 153,844,208
1hour 0.00 0.007 -2.13 94.08 8,392,039
1 day 0.00 0.017 -0.65 19.76 53,604
1 week 0.00 0.034 -1.05 5.83 1,090
1 month 0.00 0.058 -0.38 2.85 59
Std. Norm. 0.00 1.000 0.00 0.00 0

3A leptokurtic distribution is one with a higher peak and fatter tails than the normal distribution.

7



Chapter 1. Introduction

FIGURE 1.1: Distribution of returns at increasing levels of aggregation for
XOM (Jan 1999–Dec 2011). The standard normal distribution is represented

by dotted line. Distributions are fitted using the R bkde function.

1.2.2 Power Laws and Long Memory of Returns

A number of empirical studies have found consistent evidence across a large number

of securities and asset classes, that financial returns display a power law distribution

with a tail index between 3 and 54. This means that the tails of financial returns can

be approximately modelled according to the cumulative density function,

P (x) = 1−
(

x

xmin

)−α+1

, (1.10)

where α in the above equation is the tail index and xmin denotes the first point in the

power law scaling region (Gillespie, 2015). For efficient market theories, which

assume that stock price movements are driven by stochastic shocks related to news

events, this would mean that such shocks would have to be power law distributed

with α ≈ 3 (Gabaix et al., 2007). The tail index is inversely related to the thickness of

the tails of the distribution. The Gaussian distribution returns α =∞ (Cont, 2001).
4see Cont (2001) and Gabaix et al. (2007) for a useful discussion.
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1.2. The Stylised Facts of Financial Time Series

In Figure 1.2, we demonstrate the power law tail distribution for daily log-returns of

XOM. The tail index, α ≈ 3.5, is within the range specified above and is much lower

than we would expect from normally distributed returns. As discussed above, such a

finding has significant implications for risk models, such as the parametric Value at

Risk model, which often rely on the Gaussian assumption. Efforts have been made to

improve risk modelling techniques by explicitly modelling the tails of the

distribution using Extreme Value Theory (EVT), amongst other methods. Such

methods are an improvement on linear parametric models, which ignore the fatness

of the tails of returns distributions. However, they often suffer from limitations, such

as the assumption of IID tail observations and the stationarity of the distribution of

returns. An in-depth discussion of EVT is beyond the scope of this chapter. For a

good overview of the benefits and limitations of EVT see Diebold, Schuermann, and

Stroughair (2000).

FIGURE 1.2: Power law distribution of ab-
solute daily returns of XOM (Jan 1999–Dec

2011)

Power law distributions are also present in the autocorrelation function (ACF) of

absolute returns, with a time decay exponent of between 0.2 and 0.4 (Cont, 2001).

This indicates a long memory property in absolute returns, where the ACF decays

according to t−β . We fit a power law distribution to the ACF of XOM absolute daily

log-returns (Figure 1.3), finding that the ACF decays according to t−0.7, which is

outside the range indicated in Cont (2001) but still indicates a long memory

9



Chapter 1. Introduction

dependence structure in daily returns. This long memory property violates the

assumption of IID returns and, if properly exploited, can improve risk models and

forecasts. Absolute returns, alongside squared returns, are common proxies for the

variance of a financial time series.

FIGURE 1.3: Power law distribution of the ACF of absolute
daily returns for XOM (Jan 1999–Dec 2011). The ACF decays

according to a power law with an exponent of −0.7

1.2.3 Volatility Clustering

Conditional heteroskedasticity, or time varying volatility, is a ubiquitous feature of

financial returns. Figure 1.4 demonstrates a prevalence for financial returns to go

through periods of high and low volatility. This feature of financial returns led to the

introduction of stochastic volatility modelling techniques, such as the AutoRegressive

Conditional Heteroskedasticity (ARCH) model by Engle (1982). The ARCH model

was extended to the Generalised ARCH (GARCH) model by Bollerslev (1986).

Essentially, the GARCH model captures serial dependence in volatility by modelling

it as an AutoRegressive Moving Average (ARMA) process. Serial dependence in

volatility can help explain the long memory dependence structure found in both

absolute and squared returns, and violates the assumption of constant unconditional

variance. The GARCH(1,1) model, which is commonly found to be sufficient to
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1.2. The Stylised Facts of Financial Time Series

capture the effects of volatility clustering in financial time series, is outlined below.

rt = µt + εt (1.11)

εt = σtzt (1.12)

zt ∼ N(0, 1) (1.13)

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1 (1.14)

FIGURE 1.4: Daily Log-Returns of XOM (Jan 1999 - Dec 2011)

Equation 1.11 is called the mean equation. We can see it is very similar to Equation

1.3 for log-returns. The key difference is that the drift term, µt, is now time

dependent. In fact, the GARCH specification allows the mean equation to be

modelled as an ARMA process, in order to capture serial dependence that is

unrelated to volatility clustering. In the GARCH model, the error terms are no longer

IID. The term εt is modelled as the product of an IID normally distributed stochastic

process with mean 0 and standard deviation 1, and a conditional variance term. The

11
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conditional variance term is then modelled in equation 1.14 as a function of past

squared error terms (a proxy for volatility) and lagged model variance (σ2
t−1). The

GARCH model can have p lags of the squared error term and q lags of the model

variance term. However, as discussed above, the GARCH(1,1) specification is often

sufficient to capture serial dependence in the variance of financial time series.

In Figure 1.5, we display the ACF of the absolute values of the residuals from a

GARCH(1,1) model estimated from XOM daily log-returns. The long-memory

dependence structure that is visible in the log-returns (Figure 1.3) has been removed.

This indicates that the long memory component of log-returns is closely related to

serial dependence in volatility, and may be successfully exploited using stochastic

volatility modelling frameworks. However, referring to the descriptive statistics in

Table 1.2, we find strong evidence of fat tails in the GARCH(1,1) residuals.

Furthermore, our tests for dependence focus on the ACF, which is a linear statistic.

Nonlinear test statistics may find evidence of nonlinear dependence structure in the

residuals. We investigate this further in Chapter 4.

FIGURE 1.5: Power law distribution of the ACF of absolute
daily GARCH(1,1) residuals XOM (Jan 1999 - Dec 2011)

TABLE 1.2: Moments and Jarque-Bera test Statistic of XOM Daily
GARCH residuals (Jan 1999 - Dec 2011)

Series Mean Std. Dev. Skewness Kurtosis J.B. Test Stat
1 day GARCH -0.01 1.000 -1.11 14.21 28,274
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1.2.4 Time Varying Cross Correlation of Returns

The final stylised fact of financial time series that we will discuss is time varying

cross correlation of returns. Portfolio risk models frequently calibrate the covariance

matrix of asset returns to historical data. If used to manage the expected risk and

return of the portfolio, this assumes that correlation coefficients calculated from

historical data are representative of future dependence structures between the assets.

This assumption falls foul of the fact that the asset covariances are not stationary.

Figure 1.6 displays the mean correlation coefficient for the log-returns of five global

equity indices. There is a large degree of volatility in the series over time. In

particular, we can detect an increase in the correlation coefficient from about 2005

until the onset of the subprime crisis in early 2007. Another sharp increase in

correlation occurs during the increased volatility surrounding the Lehmann Brothers

crash of the 15th of September 2008. This highlights the dangers of blindly assuming

that risk estimates that are calibrated to historical data are representative of future

market movements. Prices across all asset classes tend to move together during

severe crises, even if they are uncorrelated or weakly correlated during normal times.

Thus, risk models which assume stationarity of the covariance matrix will

underestimate losses during crisis periods.

FIGURE 1.6: Mean correlation coefficient for the MSCI Emerging
Market, FTSE North America, MSCI Asia Pacific, MSCI BRIC and

MSCI European equity indices log-returns
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1.3 Motivation and Research Question

The sections above outline a number of empirical features of financial time series that

are common across different regions, asset classes and time periods. These features

violate the assumptions of common financial risk and forecasting models, and can

lead to an under-estimation of risk. When quantitative models are followed blindly,

without regard for flaws in the underlying assumptions, extreme market movements

can cause portfolio managers to rebalance their portfolios in large numbers. Taken on

aggregate, such actions by large numbers of market participants can lead to

dangerous positive feedback loops and severe price declines, with spill-over effects

to the real-economy. The above example highlights one of the key weaknesses of the

linear stochastic modelling approach: that the actions of market participants are

assumed to be independent. Thus, the framework does not allow for endogenous

dynamics, which can help explain a number of the stylised facts of financial time

series, i.e. large asset price movements, nonlinear dependence structures, and

non-stationary covariance5.

In order to better understand the build-up of risks over time, we must treat financial

markets as complex systems with elements that react and adapt to the results of their

own actions and the actions of others. This approach is necessary to inform more

reliable and realistic risk modelling techniques, and to generate consistent early

warning signals for financial crises. Complex systems have been shown to generate

endogenous, non-equilibrium, nonlinear dynamics, such as abrupt switching

between alternate states. Such dynamics may explain the tendency for financial

markets to build-up to a peak and then crash. Furthermore, studies of complex

systems have found common patterns as the system approaches a regime shift.

Examples of these patterns include nonlinear dependence structures, the emergence

of power law distributions, critical slowing down and log-periodic oscillations.

The central research question of this thesis is: Can we exploit certain universal

features of systems approaching a regime shift to detect the build-up of instabilities

in financial markets and generate consistent, reliable early warning indicators of

5Chapter 2 outlines a body of literature which discusses the evidence for and implications of endoge-
nous dynamics in economic systems.
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financial crises? This central research question is in turn broken down into three

research objectives, which are addressed in Chapter 4 to Chapter 6 of this thesis as

follows:

1. To determine if nonlinear dependence structures are present in financial time

series in the lead-up to financial crises.

2. To investigate if early warning signals of regime shifts were present prior to the

Eurozone sovereign debt crisis and, if so, whether or not these signals can be

used as robust indicators of financial crises in general.

3. To examine the usefulness of measures of time-varying correlation network

topology as indicators of systemic risk in equity markets.

1.4 Structure of Thesis

The structure of this thesis is as follows:

Chapter 2 discusses complex systems theory as an alternate framework to the

economic and financial market analysis that is generally applied in mainstream

economic theory. The chapter outlines the main characteristics of complex systems

and considers the behavioural finance roots of endogenous economic dynamics. We

outline how systems with multiple heterogeneous interacting elements can lead to

positive feedback loops and sustained out of equilibrium dynamics. We also discuss

how sequential learning and adaption, a prevalence for imitation, and technological

innovation can lead to phase transitions and emergent phenomena, such as power

law distributions, in economic and financial systems. Finally, we review literature

related to early warning signals for financial market crashes, with roots in emergent

phenomena observed in financial markets and other complex systems.

Chapter 3 outlines the theory of nonlinear dynamical systems and presents a number

of the key concepts that are used throughout the thesis, including phase spaces, fixed

points, chaos and bifurcations. We introduce a number of key tools that are used in

the study of nonlinear dynamical systems and define the methods of phase space

reconstruction, including: estimation of the correlation dimension, the false nearest
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neighbours algorithm and methods for choosing an appropriate time lag. Finally, we

outline a number of the “normal forms” of bifurcations, which lead to the creation,

destruction or stability switching of fixed points.

Chapter 4 presents the results of a number of tests for nonlinearity, which are applied

to the returns of stock market indices and sovereign bond yields. We focus on the

periods preceding the global financial crisis and Eurozone sovereign bond crisis

respectively. Phase transitions, or bifurcations, are a result of strong nonlinear

responses in a system, and cannot occur in a system which is completely described

by a set of linear equations. Thus, finding evidence of nonlinearity in financial time

series is a key first step to developing an understanding of financial crises through

the lens of bifurcations. We find mixed evidence for the presence of nonlinear

dependence in the data, focusing on the BDS test and surrogate data analysis applied

to standardised GARCH residuals. Stronger evidence exists for nonlinear

dependence in sovereign bond yield returns than for stock returns, although the

results are sensitive to the methodology used.

Chapter 5 presents empirical evidence that sovereign bond markets may have

undergone a phase transition between alternate equilibria during the Eurozone debt

crisis. We present evidence of a phenomenon called “critical slowing down”, that

theory predicts should precede such transitions. We examine the statistical properties

of sovereign bond yield data for trends which have been shown to precede

catastrophic regime shifts between alternate steady states in many real world

dynamical systems. Our results indicate that the critical transitions approach may

provide an alternate method to study financial market crashes. However, the

phenomenon of critical slowing down, estimated from the statistical properties of the

financial data, may provide false positive indications of impending crashes if used in

isolation as an early warning signal for stock markets.

Chapter 6 investigates changing correlation network topology as a methodology to

detect the build-up of instabilities in stock markets. The results of Chapter 4 and

Chapter 5 indicate that stock markets may need to be analysed at a lower level of

aggregation than the market index. Chapter 6 uses minimum spanning tree analysis

on the correlation networks of individual component stock returns for four global
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stock market indices. We assess a number of indicators of interconnectedness and

spread of the network, and propose topological shrinking of the network as an

indicator of systemic risk. This dynamical behaviour indicates an increased

likelihood for a shock to propagate through the financial system as the crisis period is

approached. The topological shrinking of the minimum spanning tree in the lead-up

to the crisis indicates an increase in the systematic component of equity returns. We

also note an apparent relationship between financial sector centrality and sectoral

modularity in markets where the financial sector is the largest component of the

index.

Chapter 7 presents concluding remarks and a discussion of the findings of the thesis.

Future work which may follow from this thesis and some limitations of the thesis are

also included.

1.5 Thesis outputs

1.5.1 Papers

The outputs from this thesis are discussed below. Regarding journal submission,

three papers will be submitted to academic journals and are based on edited versions

of each of the empirical chapters of this thesis. In addition to journal submissions,

details on conference presentations are also provided. Chapter 4, titled “Nonlinearity

in Stock and Bond Markets” will be submitted to Studies in Nonlinear Dynamics and

Econometrics. Chapter 5, titled “Critical Transitions in Financial Markets” will be

submitted to PloS one. Finally Chapter 6, titled “Network Topology and Systemic

Risk” will be submitted to Journal of Network Theory in Finance. In addition to these

three papers, one NUI Galway working paper was submitted based on the work

completed during this thesis. This is titled “Critical transitions in Eurozone sovereign

bond markets”.
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1.5.2 Conferences

• PhD Student Seminars, NUI Galway, “Nonlinear Dependence in Financial Time

Series”, Paper presentation, May 2012.

• Inter-Departmental Brown Bag Seminar, NUI Galway, Early Warning Signals

for Regime Shifts in Financial Markets”. Paper presentation, February 2013.

• Irish Research Council Annual Symposium, Dublin Convention Centre,

“Critical Transitions in Eurozone Sovereign Bond Markets”. Poster

presentation, September 2013.

• Irish Society of New Economists 10th Annual Conference, NUI Maynooth,

“Critical Transitions in Eurozone Sovereign Bond Markets”. Paper

presentation, September 2013.

• Ways of Seeing International Conference, NUI Galway, “Dynamics of Regime

Shifts in Financial Markets”. Paper presentation, April 2014

• Irish Economic Association Annual Conference, Dublin Convention Centre,

“Interconnectedness as a measure of systemic risk potential in the S&P 500”.

Paper presentation, May 2015.

• Irish Economic Association Annual Conference, NUI Galway, “Critical

Transitions in Eurozone Sovereign Bond Markets”, Paper presentation, May

2016.

• Financial Risk and Network Theory Annual Conference, Cambridge Centre for

Risk Studies, “Interconnectedness as a measure of systemic risk potential in the

S&P 500”. Paper presentation, September 2016.
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Chapter 2

Complex Systems and Financial

Markets

2.1 Introduction

In this chapter, we outline a body of literature that provides an alternate framework

for economic and financial market analysis to that generally applied in mainstream

economic theory. With roots in the theories of dynamical systems, bifurcations, chaos

and networks, complex systems theory is the study of systems with multiple

heterogeneous, interacting elements, whose interdependent behaviour leads to

emergent phenomena at different levels of aggregation1. In particular, we consider

systems where learning and adaptation are important, and where individual

elements react and adapt to the emergent patterns they create at the aggregate level.

Such behaviour often leads to positive feedback loops, such as information cascades,

which generate sustained out of equilibrium dynamics and have been used to

explain bubble dynamics in financial market.

The purpose of this chapter is threefold. Firstly, to define complex systems and

provide a broad overview of a number of common characteristics that have been

detected in complex systems in many fields of study. Secondly, to review theory and

evidence of emergent phenomena in financial markets. Finally, to discuss the

implications of this framework for providing early warning signals of financial crises.

1We define emergent phenomena as ones in which the interaction of system elements at a micro level
leads to regular patterns, or order, at the meso and macro level.
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Thus, we aim to provide both a theoretical and empirical grounding for the methods

applied in this thesis.

The remained of the chapter is structured as follows: in Section 2.2, we define

complex systems and discuss their main characteristics. In Section 2.3, we discuss the

behavioural finance roots of endogenously driven economic dynamics2. In this

section we also outline how sequential learning and adaptation, a prevalence for

imitation, and technological innovation, can lead to non-equilibrium dynamics,

phase transitions, and power law distributions. In Section 2.4, we discuss the

implications of the complex systems literature for the development of potential early

warning signals for financial market crashes. Finally, in Section 2.5, we provide some

concluding remarks.

2.2 Complex Systems

Complex systems are ones in which the interaction of many agents leads to emergent

phenomena. In other words, the behaviour and interaction of agents at a micro level

leads to global behaviour which is very different from its origins (Miller and Page,

2009). As Anderson (1972) stated in a seminal paper on the subject of emergent

phenomena, “Psychology is not applied biology, nor is biology applied chemistry”.

Anderson’s argument is essentially that complex systems comprise hierarchies, or

different levels of aggregation. At each level of analysis new concepts, laws and

generalisations are needed, due to the inability start with the fundamental laws of

behaviour of individual elements (agents) and model the macro behaviour of a

system. Even if we know the laws which govern the interaction of agents, it is still

not trivial to determine the properties of the system as a whole (Simon, 1962). Keynes

(1936) recognised this issue for economic systems, highlighting the mismatch

between individual actions and aggregate outcomes.

In this thesis, we are interested in a subset of complex systems in which evolutionary

learning and adaptation play a key role. Such systems have been termed Complex

2Endogenous dynamics are ones which come from the operation of the system itself, rather than from
external forcing
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Adaptive Systems (CAS), and have the defining feature that the individual elements

of the system interact with each other, but also adapt or react to the patterns they

create at a macro level (Arthur, 1999). Mitchell (2009) provides a general definition of

a CAS as one in which large networks of components, with no central control and

simple rules of operation, give rise to complex collective behaviour, sophisticated

information processing, and adaptation via learning or evolution. This continuum of

reaction and adaptation leads to a system that is constantly changing over time, and

to endogenously driven dynamical behaviour. As a result, CAS are probabilistic not

deterministic, difficult to predict and control, driven by nonlinear network

connections between elements of the system, and are characterised by feedback loops

between the elements of the system and the patterns they create (Farmer et al., 2012).

Fontana (2010) provides a more granular outline of the features of CAS as systems

which comprise many diverse parts, have irreversible histories, and exhibit nonlinear

dynamics. This is due to system components operating on different temporal and

spatial scales. It is this nonlinearity that leads to unique behaviour at different levels

of aggregation. Furthermore, the system components react adaptively to change in a

manner which increases their probability of survival. CAS can maintain themselves

out of equilibrium and tend to self-organise to a critical state, often called

Self-Organised Criticality (SOC). In this state, the system is vulnerable to cascades

and phase transitions following relatively minor shocks. However, it is also believed

that the system is in a state of maximum adaptability and information flow at the

point of SOC (Eidelson, 1997).

The general definition and features of complex systems discussed above leads us to a

number of further, more specific, definitions of complex systems. The first definition

is that of dynamic complexity, defined in Day (1994) as a system whose dynamics do

not lead asymptotically to a fixed point, a limit cycle, or to explosive behaviour.

Nonlinearity is a necessary but insufficient condition for dynamic complexity (Holt,

Rosser Jr, and Colander, 2011). The predominant tools used in the analysis of

dynamic complexity are nonlinear dynamical systems theory, chaos theory and

bifurcation theory. This is due to the observation that many dynamically complex

systems exhibit sensitivity to initial conditions (chaotic dynamics) and critical
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dependence on parameters (bifurcations).

The second definition is that of computational complexity. In general terms,

computational complexity relates to the number of bits of information or, more

generally, the computing resources required to solve a problem, or complete a task.

For example, given a variable which represents the state of a system, computational

complexity could describe the amount of computing resources which would be

required to recreate the dynamics of the state variable. A strict definition of a

computationally complex system is: if the system is computable then it is not

complex (Fontana, 2010). Mitchell (2009) provides a number of potential measures of

computational complexity. Firstly, she suggests complexity as size, e.g. the number of

system components. Secondly, complexity as entropy, i.e. the level of randomness in

the system. Thirdly, complexity as algorithmic complexity, which is shortest

computer programme possible to generate the information contained in the system.

The third definition of complexity is that of connective complexity. Connective

complexity is the study of the relationships that exist within the system, with a focus

on understanding the forces that maintain order and those that lead to disorder

(Fontana, 2010). Network analysis and Agent Based Modelling (ABM) are key tools

in understanding connective complexity and, in particular, examining the emergent

phenomena which occur at the different levels of aggregation.

2.3 Economic complexity

2.3.1 Decision making under uncertainty

The mainstream approach to financial economics, and macroeconomics in general, is

one where the law of large numbers and the central limit theorem implies that the

heterogeneous behaviour of a large number of independent agents washes out on

average, leading to a smooth bell curve (Miller and Page, 2009). It is the assumption

of the independence of agent behaviour that allows economics to circumnavigate the

fallacy of composition, highlighted by Keynes (1936), and to build theories and

models based on a rational, utility maximising, representative agent. For example, in
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models of demand and supply, economists generally assume that the interaction of

buyers and sellers leads to an equilibrium price. They do not take into account that

the subjective decisions of buyers (sellers) can affect the outcomes and actions of

other buyers (sellers), and lead to non-equilibrium dynamics. The Efficient Market

Hypothesis (EMH) (Malkiel and Fama, 1970), which forms the basis of much of

modern financial theory, assumes that agents form independent, rational

expectations of prices based on information which is available at the time. This

means that new information is incorporated into prices immediately and, at a given

point in time, the best prediction of the future price of an asset is the current price.

All dynamical behaviour is driven by a stochastic news process.

If economic agents are constrained in their rationality, and if their actions are not

independent, if they interact, learn and adapt this introduces the possibility of

behaviour which is very different from the mean. Simon (1957) proposes that, in

reality, agents may be boundedly rational, particularly when faced with uncertain

outcomes. They may have access to limited information, or search costs may be too

high to obtain all information required. Furthermore, boundedly rational individuals

have limited cognitive ability. Even if they have sufficient information, they may not

be able to work out the best course of action to optimize their outcomes. Constrained

cognitive ability is directly related to the computational complexity of the economic

system and financial markets. As a result, Simon (2000) proposes that behaviour of

people in the real world is as much determined by their inner memories and

processes as it is by the outer environment to which they are exposed.

Tversky and Kahneman (1975) argue that rules of thumb, or heuristics, are pervasive

when individuals are faced with decision making under uncertainty. The authors

also highlight a number of biases which occur as a result, and lead to sub-optimal

outcomes. A particular heuristic which is prevalent in individuals is

representativeness, where individuals faced with determining whether dataset A is

generated by model B will examine the degree to which the characteristics of A

match the key characteristics of B. This can lead to over-estimation of the probability

that A comes from B if the characteristics of A are similar to B, even if the probability

of B is small. Representativeness also leads to the bias of sample size neglect. For
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example, an individual may make inferences that A comes from B due to similar

characteristics, despite the fact that the sample size of A is not sufficiently large to

make such claims. This bias can lead to momentum effects in asset prices if traders

see that asset prices have risen and assume that this is representative of the fact that

prices will go up in the future. Representativeness can also be linked to availability

bias. When faced with an uncertain situation, individuals will search their memory

for relevant information in order to categorise the situation. More recent or more

extraordinary events are more likely to be evoked and found relevant, even if the

probability of their occurrence is low.

Another heuristic, which is explained in Tversky and Kahneman (1975), is anchoring.

Individuals who are asked to estimate a quantity will typically form an initial

estimate and adjust away from it based on the feedback they receive, or from

observing the estimates of others. This leads to the bias of over-anchoring, where

individuals will under-adjust away from their initial estimate. Over-anchoring can

lead to the underestimation of a damaging event, despite new information coming to

light that increases the objective probability of that event. The effect of

over-anchoring is magnified when combined with the bias of overconfidence. This

means that individuals are overconfident in their judgements despite being poorly

calibrated when it comes to assigning probabilities (Barberis and Thaler, 2003).

Shiller (1995) argues that human society has an evolutionary advantage in reacting

collectively to information, and in establishing collective memory, common

assumptions and conventions. This social force towards conformity increases with

the size of the group acting in a similar manner (Easley and Kleinberg, 2010). The bias

towards conformity can lead to herding and speculative bubbles in financial markets.

As discussed in Shiller (2002), major portfolio allocation decisions tend to be based

on common consensus, rather than individual analysis. This is due to the complexity

of the task of synthesizing all available information and contrary opinions, while

making a subjective decision as to the correct action. Therefore, speculative bubbles

are generally supported by some superficially plausible theory as to why asset price

increases are supported by fundamentals. A common error amongst investors is that

everyone assumes that someone else has carefully analysed the theory Shiller (2002).
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The biases discussed above can lead to speculative bubbles due to herding, and

feedback between asset prices and investor actions. However, biases and feedback

loops can also lead to negative asset price spirals. Prechter Jr (2001) argue that many

biases in individuals relate to evolved behaviours to avoid negative results and attain

positive results. These biases can lead to impulsive behaviour, which may not be

supported by fundamentals. Feedback loops exist between impulsive or

subconscious mental activity and stress. For a trader, poor results can lead to stress

and related impulsive behaviour, which generates further poor results and stress.

Since all market participants share the same environment, the combination of similar

stress triggers can lead to global patterns, such as asset fire-sales and liquidity spirals

during financial crises.

2.3.2 Endogenous dynamics

Constrained rationality, and the fundamental uncertainty of the outcome of actions,

is compounded by the presence of other boundedly rational market participants

whose combined actions will affect the outcome of a particular investment strategy.

Participants must form subjective beliefs about the subjective beliefs of others, and

will continuously adapt their strategies based on the success of their actions (Arthur,

2013). A key factor in this adaptive process is that decisions of participants do not

occur simultaneously (Fontana, 2010). Each adaptation and action cascades in the

system, as the choices of participants affects the performance of others. This leads to

endogenously generated fluctuations as agents explore, learn and adapt, which

Arthur (1999) likens to a constant Brownian motion.

Technological innovation provides a second source of endogenous fluctuations.

Arthur (2013) argues that the force of technological disruption is self-perpetuating.

The author gives the example of the computer, whose development demanded

further technologies, such as computer languages and data storage. Moreover, each

breakthrough makes further breakthroughs possible. Therefore, Arthur (2013) claims

that the economy is in a permanent state of disruption. Solomon and Golo (2014)

further outline the disruptive effects of technological or financial innovation, stating

that the introduction of new technology causes some large firms to shrink and other
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smaller firms to grow. Sectors that are more capable of exploiting new technologies

will start to grow, while others will decline. As a result, even when the macro

economy appears to be stable, there are continuous, non-equilibrium fluctuations at

both the micro level of interacting agents and the meso level of expanding, and

declining, firms and sectors.

Feedback loops are a type of endogenous dynamical behaviour that have been used

to explain bubbles in financial markets, and can fundamentally alter the dynamics of

a system (Miller and Page, 2009). Negative feedback loops, whose forces cause a

system to converge to a stable equilibrium, are familiar territory in economic theory.

The laws of supply and demand states that the interaction of buyers and sellers will

dampen the effect of a price shock, and cause the market to converge quickly to an

equilibrium price and quantity. While negative feedback loops lead to stability in a

system, positive feedback loops amplify changes and lead to instability. The result of

the presence of both positive and negative feedback loops is complex dynamical

behaviour (Arthur, 1999). The implication for financial markets is that the system

does not blindly revert to equilibrium, nor explode and die (Zigrand, 2014).

An example of feedback loops in financial markets is provided by herding due to

imitation. Where traders have independent but imperfect information, they may

rationally discount their private information if they observe a large number of other

traders following a different strategy. In effect, they make inferences about the

information held by others from their actions (Easley and Kleinberg, 2010). The

information effect increases where large numbers of traders are following the

alternate strategy, and where the system is very complex. In such a case, the

probability that a trader will follow the herd increases. This can lead to asset prices

increasing far beyond their fundamental value, as more and more traders follow the

herd. Positive feedback loops related to herding due to imitation, often referred to as

information cascades, are fundamentally fragile because the cascade can easily

collapse when new public information comes to light (Easley and Kleinberg, 2010).

Herding may also occur in systems where agents are assumed to be rational but have

incomplete information. Rational observational learning involves individuals

making rational Bayesian inferences from the behaviour of others (Hirshleifer and
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Hong Teoh, 2003). Moreover, herding may also be caused by strong payoff

externalities. Examples of payoff externalities are given by the Diamond and Dybvig

(1983) bank run model, or in mutual fund runs outlined in Chen, Goldstein, and

Jiang (2010). In Chen, Goldstein, and Jiang (2010), if investors in a fund believe that a

redemption shock will lead to a fire-sale of assets into an illiquid market, and that the

resulting losses may trigger further redemptions, they have the opportunity to limit

their losses by redeeming their shares. A “first mover advantage” occurs because a

significant portion of the costs related to redemptions are borne by the remaining

investors in the fund, and not by those who have cashed out. Taken on aggregate, the

first mover advantage scenario can lead to self-fulfilling cycles related to positive

feedback loops between investors’ decisions to redeem and asset price decreases.

These examples show that, even with fully rational agents, the interdependence of

investor actions and the structure of financial contracts can lead to endogenous

dynamics and the possibility for multiple equilibria.

2.3.3 Phase transitions

Sustained out of equilibrium dynamics can lead to bouts of volatility, or temporary

instability, and cause the system to evolve towards a critical state (Eidelson, 1997). In

other words, the build-up of instabilities in the system reaches a critical point and a

relatively small perturbation can cause abrupt, discontinuous changes to the state of

the system. These shifts, also known as regime shifts, phase transitions, critical

transitions or bifurcations, are caused by the critical dependence of the state of the

system on parameters. In general, emergent phenomena do not occur in complex

systems until some parameter reaches a critical level. The parameter in question

generally relates to the intensity of adjustment (adaptation) of individuals, or the

degree of connectivity in the system (Arthur, 2013). Strogatz (1994) argue that, if we

examine a dynamical system in phase space and the topological structure of the

system changes as a parameter is varied, a bifurcation has occurred. Bifurcations

cause changes in the number or stability of fixed points, closed orbits, or saddle

points in the system.
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Catastrophe theory, developed by Thom (1972) and Zeeman (1977) from the more

general bifurcation theory, takes the view that that the world is mostly smooth and

stable, but is subject to discontinuous change when a key parameter reaches a critical

point (Rosser, 2000). In a catastrophic bifurcation, as the parameter is varied, the

system can switch from a state with a single equilibrium to multiple equilibria. When

the parameter reaches a critical point, the state of the system will collapse to a new

equilibrium. The empirical features of financial crises led Zeeman (1974) to develop a

catastrophe model of stock markets, where the percentage of the market held by

chartist investors over fundamentalists acts as the critical parameter. This model was

initially heavily criticised, due to the qualitative nature of its arguments and the

violation of certain mathematical assumptions (Sussmann and Zahler, 1978).

However, in recent years there has been increased interest in the catastrophic

bifurcation as an explanation of financial crises. Barunik and Kukacka (2015), for

example, fit a catastrophe model to U.S. stock market data over the period 1984–2010.

They find that the catastrophe model outperforms linear or logistic models in many

time periods. However, the performance of the model between 2003 and 2009 cannot

be distinguished from, or underperforms, the logistic model, indicating that a

catastrophe model may not explain the discontinuous change experienced in the U.S.

stock market during the recent global financial crisis.

The catastrophic bifurcation is only one type of phase transition that can cause

structural change in complex systems3. Simulation models of financial markets with

heterogeneous agent types, such as fundamental value traders and trend followers,

can generate phase transitions from equilibrium to complexity to chaos, or from

equilibrium to complexity to multiple equilibria (Arthur, 2013). These models are

generally called Agent Based Models (ABMs), and often apply relatively simple

behavioural rules. ABMs have been developed to incorporate learning and

adaptation, with roots in bounded rationality of Simon (1957), biases and heuristics

of Tversky and Kahneman (1975), and insights into investor behaviour from surveys

by Frankel and Froot (1990) and Taylor and Allen (1992). The critical parameters in

many ABMs relate to the switching intensity between strategies, risk aversion, and

3see Chapter 3 for a more in-depth discussion of bifurcation theory, and an overview of a number of
transitions which can occur in dynamical systems.
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the deviation of asset prices from fundamentals (Brock and Hommes, 1998;

Gaunersdorfer, 2000; Hommes, 2001; Chiarella and He, 2002; Brock, Hommes, and

Wagener, 2005). ABMs of financial markets generally incorporate a stochastic news

component; however, it is the endogenous dynamics which drive the system towards

the critical point, with stochastic shocks merely triggering the phase transition.

2.3.4 Power laws and scale free networks

Power law distributions are ubiquitous features of CAS and are also empirical

features of many economic systems. For example, power law distributions have been

found in wealth and income distributions (Atkinson and Piketty, 2007), firm size

(Gabaix and Landier, 2008), and financial market fluctuations (Stanley et al., 2002).

Furthermore, power laws can be found in the network topology of CAS. Scale-free

networks are ones which have a large number of nodes with few connections (low

degree nodes) and a very small number of nodes with many connections (high

degree nodes). Scale-free networks are self-similar4, have a power law degree

distribution and are an emergent property of CAS. They tend to emerge in CAS due

to their resilience to the removal of a random node in the network and thus, are

robust to random node failure. However, if a high degree node is deleted it can have

serious effects on the stability of the system (Mitchell, 2009). Scale-free networks are

generally seen as a consequence of two mechanisms: firstly, networks grow

continuously by adding nodes, and secondly, nodes attach preferentially to the most

connected existing nodes (Albert and Barabási, 2002). Studies of financial network

topology has found evidence of scale-free networks in inter-bank markets (Boss et al.,

2004; Iori et al., 2008; Cajueiro and Tabak, 2008), derivatives (Peltonen, Scheicher, and

Vuillemey, 2014; Kenny, Killeen, and Moloney, 2016) and credit networks (Fujiwara

et al., 2009; De Masi, 2009).

Solomon and Golo (2014) assert that power law distributions emerge in systems, such

as economic systems, if the elements of the system follow an autocatalytic process. In

other words, the rate at which the elements of the system grow is proportional to its

4Self-similarity in dynamical systems is related to strange attractors or fractals, where if we zoom
in on any part of an attractor, it will have features which are topologically or statistically similar to the
whole.
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current state. For example, if the rate of accumulation of wealth is proportional to the

level of wealth held by an individual. Autocatalytic growth is also called preferential

attachment in network terminology (Easley and Kleinberg, 2010) and, more

generally, proportionate growth (Sornette, 2006). However, Schweitzer et al. (2009)

state that the presence of a power law distribution does not necessarily imply

proportionate growth, because it is only one of many types of processes which can

lead to power law distributions5. In general, systems with strong nonlinear

dynamics, or stochastic multiplicative amplification, appear to be characterised by

power law distributions (Sornette, 2006).

The emergence of power law distributions in financial time series was first noted in

Mandelbrot (1963). Mandelbrot proposed that the distribution of many financial

returns had much longer tails than the Gaussian distribution, and could be better

modelled by the Paretian (power law) distribution. Since Mandelbrot’s seminal

paper, a large body of literature has emerged that has analysed the emergence of

power laws in financial markets. One apparently universal feature of financial

market fluctuations is that the distribution of stock market returns follows a Levy

distribution in which the tails of the distribution converge to a power law, with and

exponent approximately equal to −3 (Lux and Alfarano, 2016). This feature of stock

market returns appears to be universal across economies and time periods, with a

relatively constant scaling exponent (Stanley et al., 2002).

This inverse cubic power law distribution holds when analysing both company level

returns and stock market indices (Liu, Gopikrishnan, and Stanley, 1999;

Gopikrishnan et al., 1999). Universal power law scaling can also be found in the

temporal dependence structure of stock price volatility. Ding, Granger, and Engle

(1993) found evidence of power law decay in the autocorrelation structure of the

absolute value of stock market returns, a common proxy for volatility. A scaling

exponent of −0.2 to −0.3 appears to be universal across all returns time series.

Evidence of power law distributions is also provided for trading volume in

international stock markets (Gopikrishnan et al., 2000; Plerou and Stanley, 2007), and

bid-ask spreads (Plerou, Gopikrishnan, and Stanley, 2005).

5see Gabaix (2009) for discussion of a number of alternate power law generating mechanisms.

30



2.4. Early warning signals

Lux and Alfarano (2016) review a number of economic models that are capable of

generating power law distributions, with exponents which are similar to those

empirically observed in financial data. Examples include percolation, interacting

agent and discrete choice models. A key feature of these models is that the

emergence of the power laws are a result of endogenously driven dynamics.

However, the results are highly dependent on modelling inputs, such as the number

of agents and the noise level. Researchers do not yet fully understand why power

laws emerge in financial markets; however, their presence and universal nature

points to complex, endogenous dynamics caused by interacting market participants

(Lux and Alfarano, 2016).

2.4 Early warning signals

Sensitivity to initial fluctuations and randomness is a feature of self-organising

behaviour in CAS (Easley and Kleinberg, 2010). In the initial phases, for example

after a phase transition from an organised to a disorganised state, it is not clear which

system elements will become most important in terms of connections or size. In other

words, there are multiple possible outcomes or basins of attraction. This feature is

called path dependence, and is related to the non-ergodicity of complex systems, i.e.

where a shock at one point in time affects the long-run state of the system (Durlauf,

2005). The implication for economic and financial systems is that it may not be

possible extrapolate new behaviour from past crises, since the new collective

organization is generally completely different from the previous one (Schweitzer

et al., 2009).

Despite the inability to extrapolate from past behaviour, and the unpredictability of

potential outcomes, it may be possible to leverage certain universal features of

systems approaching a critical point to detect the build-up of instabilities in financial

markets. A series of papers by Didier Sornette, Anders Johansen and collaborators

found log periodic power laws as a fingerprints of critical behaviour, such as

ruptures of spherical pressurised metal tubes (Johansen and Sornette, 2000),

earthquakes (Johansen, Saleur, and Sornette, 2000; Huang, Saleur, and Sornette,
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2000), and financial crashes (Sornette, Johansen, and Bouchaud, 1996; Johansen,

Ledoit, and Sornette, 2000). Johansen, Sornette, and Ledoit (1999) observe power law

acceleration in stock market prices, decorated by log periodic oscillation, in the

build-up to financial crises. The authors propose a model where the emergence of

power law behaviour is due to self-similarity of markets approaching a critical point.

This self-similarity is driven by the imitative behaviour of traders, with log periodic

oscillations caused by complex power law exponents. It is self-similarity that allows

local imitative behaviour to cascade to the global environment (Johansen, Sornette,

and Ledoit, 1999). This model is based on the proposal that the main concepts

underlying financial market dynamics are imitation, herding, self-organised

co-operation, and positive feedback loops (Sornette, 2014). Examples of successful

prior-prediction of peaks in asset markets using the log periodic power law

framework can be found for the U.K. real estate market (Zhou and Sornette, 2003),

the U.S. real estate market (Zhou and Sornette, 2006), oil prices (Sornette, Woodard,

and Zhou, 2009) and the Chinese Stock market (Jiang et al., 2010)6.

While log periodic power laws have their roots in mechanical ruptures, another

potential early warning signal for phase transitions has recently gained popularity in

ecological sciences. Critical Slowing Down (CSD) has been found as a universal

property of systems approaching a catastrophic bifurcation (Wissel, 1984). CSD has

been detected prior to regime shifts in real world complex systems that are believed

to have passed through a catastrophic bifurcation, such as climate systems (Dakos

et al., 2008; Lenton et al., 2012) and ecological systems (Rietkerk et al., 2004;

Carpenter et al., 2011). Recently, evidence has been provided that CSD occurs prior to

non-catastrophic bifurcations (Boettiger and Hastings, 2012; Kéfi et al., 2013),

meaning that the measure could be used more generally as an indicator of change in

a complex system. Recent efforts to detect CSD prior to financial crises have

produced mixed results. Guttal et al. (2016) find no evidence of CSD prior to stock

market crashes in the U.S., German and U.K. stock markets over the past century.

The authors find evidence of rising variability as a universal feature of markets

approaching a crash, suggesting a stochastic transition as the likely cause of abrupt

6For a summary of additional evidence of advanced prediction of bubbles and crashes see (Sornette
et al., 2013).
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transitions in financial markets. However, Tan and Cheong (2014) find strong

evidence of CSD in the U.S. housing market in the lead-up to the sub-prime crisis,

with weaker evidence for the 1997–1998 Asian financial crisis and the 2000–2001

technology bubble.

Another potential method for detecting impending regime shifts in complex systems

is to examine changes in network topology and interconnectedness. May (1972)

found that large complex systems may suddenly become unstable if the average level

of connectedness, or strength of the connections, in the system reaches a critical level.

Moreover, certain network structures are more stable than others to disturbances. As

discussed above, disassortative networks, such as those which exhibit power law

degree distributions, can be more stable to random perturbations (May, Levin, and

Sugihara, 2008). Thus, changes in network topology can lead to an unstable system,

and can push the system closer to a critical point (Schweitzer et al., 2009). A number

of topological phase transitions have been noted in complex networks, such as the

emergence of giant connected components, scale-free networks, critical levels of

connectedness for propagation of epidemics, and condensation transitions7.

Therefore, dynamic analysis of measures related to network structure, degree

distribution and connectedness may provide indicators of impending regime shifts.

Haldane (2009) proposes that financial networks may exhibit a robust but fragile

characteristic, where connections may help dissipate shocks throughout the financial

system. However, over a certain level of connectivity the shocks may propagate

through-out the system and cause contagion. While empirical evidence for phase

transitions in financial networks is limited, a number of simulation papers provide

frameworks for phase transitions. The Gai and Kapadia (2010) and Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2015) models of the interbank market provide recent

examples. Both studies find connectivity and concentration to be key variables in the

propagation of shocks. Wiliński et al. (2013) provide some evidence of transitions

from a hierarchal scale free structure to a superstar structure prior to the global

financial crisis, using dynamic minimum spanning tree analysis of the Frankfurt

Stock Exchange.

7see Dorogovtsev, Goltsev, and Mendes (2008) for an overview.
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2.5 Conclusion

In this chapter we have outlined a framework for the study of economic and financial

markets as complex systems by presenting a body of empirical and theoretical

research. We have discussed how the interdependent actions of boundedly rational

agents can lead to nonlinear, non-equilibrium dynamics, related to endogenously

driven fluctuations and feedback loops. This dynamical behaviour can push a system

towards and critical point, where changes in underlying parameters can lead to

structural change in system. Emergent phenomena, such as power law distributions

and scale free networks, which are universal features of complex systems, have been

shown to occur in many economic and financial systems. These emergent

phenomena provide evidence and motivation for the study of financial markets as

complex dynamical systems, and financial crises as critical phenomena.

This chapter proposes a number of potential avenues for the research of early

warning signals of financial crises, with roots in complex dynamical behaviour.

Research into log periodic power laws, and related empirical evidence, is well

developed for financial market crashes. However, there is scope for empirical

research into the presence of CSD prior to crashes in financial markets. There is also a

dearth of empirical research into early warning signals of phase transitions in

financial networks. Therefore, the research conducted in the remainder of this thesis

is motivated by the destructive nature of the recent financial crisis, the empirical and

theoretical evidence of complex economic dynamics presented in this chapter, and

the scarcity of reliable early warning signals for the build-up of financial instabilities.
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Chapter 3

Nonlinear Dynamical Systems and

Bifurcation Theory

3.1 Introduction

This chapter provides a brief overview of a number of the key concepts and

methodologies discussed in the remainder of this thesis. In Sections 3.2.1 and 3.2.2

we provide an overview of the key features of dynamical systems, including

trajectories, fixed points, attractors and chaos. Furthermore, in Section 3.2.3 we

provide an introduction to some of the tools of nonlinear dynamical systems theory

that are used in this thesis, such as phase space reconstruction, the correlation

dimension and the false nearest neighbours algorithm. Finally, in Section 3.3 we

discuss bifurcations as the primary method by which fixed points in a nonlinear

dynamical system are created, destroyed or switch stability. In section 3.3 we also

provide examples of the normal forms of the key classes of bifurcations.

3.2 Nonlinear Dynamical Systems Theory

3.2.1 Dynamical Systems

A dynamical system can be defined in terms of a phase space, M , and a map or law

of motion, f . Where the phase space, M ∈ Rd, and xd is a point in d-dimensional

phase space that defines the state of the system at a particular point in time. The
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evolution rule, f t, is usually represented by a d-dimensional map, or a set of ordinary

differential equations, that maps xd 7→ xdt (Kantz and Schreiber, 2004). If there is a

definite rule that maps xd to a unique point, xdt , the system is deterministic

(Cvitanovic et al., 2005). We can then use the notation

xdn+1 = F (xdn), n ∈ Z (3.1)

for a discrete time, and for continuous time

d

dt
xd(t) = f(xd(t)), t ∈ R (3.2)

A trajectory is the set of points in M which traces out the evolution of xd to xdt . In a

fully deterministic system, where the f t is independent of time, and is Lipschitz

continuous, M will be smooth and for almost any initial value a unique trajectory

will exist1. A key implication of the uniqueness of trajectories is that trajectories will

not intersect. If they did then, for a given starting point there would be more than

one solution, causing the uniqueness of trajectories to be violated (Strogatz, 1994).

When examining a nonlinear dynamical system, we are generally interested in the

existence, number and stability of fixed points. For a continuous system, this can be

done by analytically solving the systems of ordinary differential equations that

describe its dynamical behaviour, obtaining the eigenvalues and eigenvectors. We

can tell a lot about the stability of a system by examining its eigenvalues to classify

the fixed points. For example, in a 2-dimensional system where both eigenvalues

have positive real parts, the fixed point in the system will be unstable and will repel

trajectories away from that point. Where both eigenvalues have negative real parts,

the fixed point will be stable and attract trajectories towards that point. If there is one

positive and one negative attractor, the trajectories along the eigenvector

corresponding to negative eigenvalue will be attracted towards and trajectories along

the positive eigenvalue will be repelled away from the fixed point. The situation

where one eigenvalue is positive and one negative is called a saddle point. Finally,

1Cvitanovic et al. (2005) state that there is a subset of points, for example tips of wedges and cusps,
for which trajectories are not defined. Hence the use of almost any initial value in this statement.
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where one or more eigenvalue is imaginary we can get centres and spirals (Strogatz,

1994).

Figure 3.1 provides an example of a simple nonlinear model that generates stable

fixed points, unstable fixed points and saddle points. The model is the Lotka-Volterra

model of competition between two species, and is reproduced from the specification

outlined in (Strogatz, 1994).

ẋ =3x−x2−2xy

ẏ =2y−xy− y2
(3.3)

In the phase portrait in Figure 3.1, the dark lines represent trajectories and the light

coloured arrows represent the direction and velocity of trajectories starting from a

particular point in phase space. Stable fixed points are represented by a red node,

whereas unstable fixed points and saddle nodes are represented by a white node.

There are two stable fixed points, or attractors, in the system at (0, 2) and (3, 0). There

is an unstable fixed point, or repellor, at (0, 0) and finally a saddle point at (1, 1). This

example demonstrates that multiple outcomes can occur in even simple

2-dimensional nonlinear systems. The sphere of influence of the stable fixed points in

the system is called the basin of attraction. This means that a point starting in the

basin of attraction of a stable fixed point will converge asymptotically to that fixed

point.

FIGURE 3.1: Model of competing species.
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3.2.2 Chaos and Strange Attractors

The evolution of deterministic systems is given by a trajectory in the state space

forming an attractor: a geometrical shape which exists in a subset of the state space

(Papana, 2009). When the dimension of a nonlinear dynamical system is ≥ 3, very

complicated geometrical objects can occur in phase space. Such attractors are called

strange attractor, have a non-integer dimension, and are found in chaotic systems

(Kantz and Schreiber, 2004). Strange attractors occur due to repeated stretching and

folding, are bounded to a subset of phase space, and generally have a fractal

geometry. Fractals are complex geometric shapes which exhibit some degree of

self-similarity, i.e. if we zoom in on any part of a fractal it will have features which

are topologically or statistically similar to the whole.

Chaotic systems are particularly interesting as they are both deterministic and

unpredictable, due to sensitive dependence on initial conditions. A system is said to

be chaotic when tiny deviations in initial conditions can lead to exponential

divergence in trajectories. One of the simplest chaotic attractors is given by the

Rössler (1976) system of equations.

ẋ =−y − z

ẏ = x+ ay

ż = b+ z(x− c)

(3.4)

The Rossler system is plotted in Figure 3.2 in 2-dimensions (left pane) and

3-dimensions (right pane) with a = b = 0.2 and c = 8, which gives a chaotic, strange

attractor. As stated above, strange attractors are a result of stretching and folding. In

2-dimensions we can see the stretching as the trajectories spiral outwards. We have to

go to the third dimension to see the folding back towards the initial starting point. It

is this folding in the third dimension that ensures the uniqueness or non-intersection

of trajectories (Strogatz, 1994). We can see that the Rossler attractor is bounded, due

to folding, such that it is confined to a subset of 3-dimensional phase space.

However, as is characteristic for chaotic systems, we get exponential divergence of

initially close trajectories.
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FIGURE 3.2: Rossler strange attractor in 2 and 3-dimensions.

In a chaotic system, the properly averaged exponent of deviation, called the

Lyapunov exponent, quantifies the strength of chaos. While a number of different

Lyapunov exponents can be defined for a dynamical system, the most important is

the maximal Lyapunov exponent, which is defined by Kantz and Schreiber (2004) as

follows:

Let two points in phase space, xdn1 and xdn2 whose initial distance

‖xdn1 − xdn2‖ = δ0 � 1 and whose distance ∆n steps into the future is given by

δ∆n = ‖xdn1+∆n − xdn2+∆n‖. The maximal Lyapunov exponent, λ, is defined as

δ∆n ' δ0e
λ∆n (3.5)

A positive value for λ indicates exponential divergence of initially close trajectories

and a chaotic dynamical system.

3.2.3 Phase Space Reconstruction

A key challenge in nonlinear time series analysis is to understand the deterministic

system that is generating the time series when we have no knowledge of the

underlying system of equations. To do so, the observations must be converted into
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states space values. This is completed by means of phase space reconstruction by the

method of delays (Kantz and Schreiber, 2004). A reconstruction of the attractor

underlying the time series, xt, is given by the time delay embedding

xt 7→ (xt, xt−τ , ..., xt−de+τ ), (3.6)

= st (3.7)

where de is the embedding dimension and τ is the time lag. The Takens (1981)

embedding theorem states that, as long as the embedding dimension is greater than

2D + 1, the embedding will preserve the dynamical properties of the underlying

attractor, where D is the dimension of the true state space. However, for the

estimation of topological invariants, such as the correlation dimension, Sauer, Yorke,

and Casdagli (1991) generalise Takens’ result and find that an embedding dimension

greater than twice the box counting (fractal) dimension is sufficient. Sauer, Yorke,

and Casdagli (1991) define the box-counting dimension of an attractor, A, as

DF = lim
r→∞

logN(r)

−logr
, (3.8)

where N(r) is the number of cubes of size r which intersect the attractor, A.

In practice a standard method for choosing an appropriate embedding dimension,

which will provide a faithful reconstruction of the attractor, is provided by the false

nearest neighbours (FNN) algorithm (Kennel, Brown, and Abarbanel, 1992). The idea

behind the algorithm is, for a time series xt with embedding st(de), to gradually

increase the embedding dimension de and count the number of nearest neighbours

which are within threshold ε of each other at each dimension. Given an embedding

dimension that is too small to provide a faithful reconstruction, the topological

structure of the underlying attractor will not be preserved (Papana, 2009). In this case

the reconstructed vector will have (false) neighbours which would not be within

distance ε of each other in a higher dimension. A sufficient embedding dimension is
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provided by the value of de for which the fraction of neighbours that are false is

sufficiently small.

The next challenge is to find a good estimate of the time lag τ . Kantz and Schreiber

(2004) state that choosing too small a time lag can lead to an embedding vector where

the successive elements are strongly correlated, whereas too large a time lag can lead

to successive elements which are almost independent. Two alternate methods for

choosing the time lag are outlined in Kantz and Schreiber (2004). The first is the first

zero of the autocorrelation function, which the authors find provides a good trade-off

between too large and too small a time lag. The second method is the first minimum

of the time delayed mutual information, (Fraser and Swinney, 1986).

3.2.4 Correlation Dimension

For embedded time series st with embedding dimension de, the correlation

dimension is a measure of how the points are distributed within the embedding

space. In order to estimate the correlation dimension, the correlation sum is defined

for st as the fraction of all possible pairs of points which are closer than a given

distance ε. The correlation sum is given by the equation

C(ε) =
2

N(N − 1)

N∑
i=1

N∑
j=1

Θ(‖(si − sj‖ < ε)), (3.9)

where Θ(X) = 1 if and only if X is true and Θ(X) = 0 in all other cases. ‖.‖ denotes

the supremum. The correlation sum is the discrete time equivalent of the correlation

integral and estimates the probability that, for dimension de, two randomly chosen

points are closer than ε. In the limit where the number of data points goes to infinity

and ε is small, the correlation sum increases according to a power law as ε is

increased i.e.

C(ε) ∝ εCD , (3.10)
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where CD is the correlation dimension and can be defined by

CD = lim
ε→∞

lim
N→∞

logC(ε)

logε
(3.11)

According to Small (2005), noise has a correlation dimension equal to the embedding

dimension. Therefore, if we calculate the correlation dimension of an IID stochastic

process at any embedding dimension (de), CD will equal de. A correlation dimension

lower than the embedding dimension is an indication that the underlying system is

not dominated by noise and there is some underlying deterministic structure. The

standard method for estimation of the correlation dimension is set out in Grassberger

and Procaccia (1983). One plots logC(ε) against logε and calculates the slope of the

graph as ε→∞. Due to the finite nature of many time series of interest, a scaling

region must be picked where ε is moderately small.

Creedy and Martin (1994) state that there are numerous problems with the

application of the correlation dimension to time series which are finite and noisy. If a

deterministic process has a high dimension, the relationship between CD and de for

moderate sized de will be similar for deterministic and stochastic processes.

Furthermore, for near unit root stochastic processes the CD can be mistaken for that

of a deterministic process. Finally, if the data has a low signal to noise ratio then CD

may be inaccurate. Therefore, for a finite dataset it is not possible to confirm with

certainty whether or not an underlying stochastic process has an infinite correlation

dimension.

3.3 Bifurcation Theory

3.3.1 Fixed Points and Bifurcations

In this section we provide an introduction to bifurcation theory, with examples of

simple bifurcations which can occur even in one-dimensional nonlinear systems. The

objective of the section is to introduce bifurcations as the primary mechanism by

which fixed points are created, destroyed or switch stability in nonlinear dynamical
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TABLE 3.1: Examples of simple bifurcations in 1-dimension

Bifurcation Normal form Equilibria as r passes threshold

Saddle node ẋ = r + x2
No fixed points→
Two Stable
Creation of fixed points.

Transcritical ẋ = rx− x2
One Stable and One Unstable→
One Unstable and One Stable
Stability switching of fixed points.

Supercritical Pitchfork ẋ = rx− x3
One Stable→
Two Stable and One Unstable
Both creation and stability switching of fixed points.

systems. Bifurcations are the qualitative changes to a dynamical system induced by

changes in some key parameters of the system. In other words, the dynamical system

undergoes a qualitative change when it passes through the bifurcation point, caused

by changes in some key parameters (Strogatz, 1994). Bifurcations that involve

changes in the existence, number, or stability of fixed points are knows as local

bifurcation. Global bifurcations involve changes in the entire orbit or trajectory of a

system. Furthermore, bifurcations can be classified as continuous when eigenvalues

in the system becomes stable or unstable, or discontinuous when eigenvalues appear

or disappear (Sprott, 2003).

In Table 3.1 we describe three common local bifurcations that occur in

one-dimensional continuous nonlinear systems. The normal form for the saddle node

bifurcation is ẋ = r + x2, where x represents the state of the system and r is the

bifurcation parameter. A fixed point in the system occurs where ẋ = 0. The saddle

node bifurcation is the basic mechanism by which fixed points are created and

destroyed in a dynamical system. For r < 0 there are no fixed points in the system;

however, as we increase r to r = 0 a half stable fixed point appears. If we further

increase r to r > 0, the half stable fixed point splits into one stable and one unstable

fixed point. The bottom panel of Figure 3.3, illustrates the existence, position and

stability of fixed points in the saddle node bifurcation equation as r is varied. The

saddle node bifurcation is a discontinuous bifurcation as, once the bifurcation point

is crossed from either direction, the fixed points (and associated eigenvalues) appear

or disappear. ẋ = r + x2 is called the normal form of the saddle node bifurcation. It is

so called as even much more complicated and higher dimensional systems will

behave similarly when we examine the system close to the fixed point as a saddle
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node bifurcation occurs.

The next bifurcation of interest is the transcritical bifurcation. It is one in which the

fixed points in the system are not created nor destroyed, rather the stability of fixed

points switch once the bifurcation point is reached. The normal form of the

transcritical bifurcation is ẋ = rx− x2. It is the primary mechanism for changes in the

stability of fixed points in a system (Strogatz, 1994). We can see from the bifurcation

diagram in the lower panel of Figure 3.3 that the stability of fixed points switches as r

is varied. As r goes from r < 0 to r > 0, the stable fixed point at x = 0 becomes

unstable and the unstable fixed point which approaches 0 along the diagonal

becomes stable.

Pitchfork bifurcations occur in systems which have symmetry. Strogatz (1994) gives

the example of load bearing beam. When the load is small, the beam is stable in the

vertical position. After the load breaches the beam’s load bearing capacity, the

vertical beam becomes unstable and may buckle to the left or the right. Therefore, the

stable (vertical) fixed point has switched from stable to unstable and two new fixed

points (left and right buckled positions) are created. The lower panel of Figure 3.3

shows the supercritical pitchfork bifurcation. As r moves from r < 0 to r > 0, the

stable fixed point at x = 0 becomes unstable and two new stable fixed points are

created.
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FIGURE 3.3: Saddle node, transcritical and supercritcal pitchfork bifurcations. The
top panel represents X versus Ẋ with r = 5, r = −5 and r = 0. The bottom panel

presents the bifurcation diagram of fixed points.

3.3.2 Hysteresis

In the preceding section we described the saddle node bifurcation as discontinuous,

due to the appearance or disappearance of eigenvalues in the system. The saddle

node bifurcation can also be described as explosive as it lacks hysteresis, (Sprott,

2003). Hysteresis means that the bifurcation will occur for different values of the

parameter once the direction of the parameter is reversed. In Figure 3.3 we can see

that the saddle node bifurcation occurs at r = 0 regardless of the direction of the

parameter. An example of a transition in which hysteresis occurs is given by adding

an imperfection parameter to the supercritical pitchfork bifurcation. We can see from

Equation 3.12 below that when the imperfection parameter (h) is equal to zero we are

left with a supercritical pitchfork bifurcation.

ẋ = h+ rx− x3 (3.12)

Where the value of r is positive, varying h causes the system to switch between

alternate equilibria. When h = 0 there are two stable fixed points in the system at

x = ±
√
r and an unstable fixed point at the x = 0. If we increase (decrease) h, the

stable fixed point to the right (left) of the origin begins to converge with the unstable
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fixed point. If h passes a critical value, the system will collapse to the left (right) hand

fixed point and the system will have only a single stable equilibrium. Reducing h

back below the critical threshold is not sufficient to reverse the transition. This lack of

reversibility at the same parameter value for which the bifurcation occurred is known

as hysteresis. In Chapter 5 we discuss the theory of discontinuous bifurcations with

hysteresis in more detail, providing examples and outlining potential applications in

explaining discontinuous regime shifts in real world dynamical systems.

3.4 Conclusion

This chapter has outlined a number the key concepts and tools of nonlinear

dynamical systems theory and bifurcation theory, which will be referred to

throughout this thesis. Of particular importance in the following chapters will be the

concepts of nonlinear systems, chaos, phase space reconstruction, discontinuous

bifurcations and hysteresis.
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Chapter 4

Nonlinearity in Stock and Bond

Markets

4.1 Introduction

The objective of this chapter is to test financial time series for evidence of nonlinear

dependence in the lead-up to financial crises. Specifically, we focus on the daily

log-returns of stock indices in the period preceding the 2007-2009 global financial

crisis, and sovereign bond yields in the lead-up to the Eurozone sovereign bond

crisis, which began in earnest in 2010. In Chapter 2 we discussed how complex

systems are characterised by nonlinear network connections and how nonlinearity is

a necessary condition for dynamic complexity. A key motivation for the approach

taken in this chapter is the statement of Dakos et al. (2012a), that critical transitions

(bifurcation) are triggered by strong nonlinear responses in a system. Thus, evidence

of nonlinearity should be present in a system approaching a critical transition.

Finding evidence of nonlinear dependence in the stock and bond market data would

open the possibility that such crises can be explained as a bifurcation or regime shift

in the system. When a regime shift occurs in a dynamical system, the system

switches abruptly between alternate steady states (equilibria) and displays

qualitatively different behaviour to the original state 1.

As discussed in Chapter 1, the dominant methods in the analysis of financial time

series are based on the linear paradigm, which states that small causes lead to small

1For more details on regime shifts in financial markets, refer to Chapter 5 of this thesis.
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effects. Linear equations can only lead to exponentially decaying or growing periodic

oscillations, with all irregular behaviour caused by stochastic shocks (Kantz and

Schreiber, 2004). Data which originates from a nonlinear data generating process can

generate much richer types of behaviour, such as sudden bursts of volatility and

large asset price movements (Hsieh, 1991). Moreover, nonlinear chaotic time series

can behave in a manner that is similar to stochastic processes, but are governed by

nonlinear deterministic behaviour. Such systems can be predictable in the short run

but not the long run, due to sensitivity to initial conditions (Barnett, Medio, and

Serletis, 2015)2. While financial time series undeniably have stochastic components,

the behaviour of asset prices during crises are qualitatively similar to bifurcations in

real world dynamical systems, such as ecosystems and climate systems 3.

The question of whether financial data is the result of a nonlinear or low dimensional

chaotic dynamical system has long been explored by academics and market

practitioners. Campbell, Lo, and MacKinlay (1997) state that interaction between

agents in the market, the price discovery process and the dynamics which generate

macroeconomic fluctuations are all nonlinear. While financial time series data may be

the product of a nonlinear data generating process and may exhibit nonlinear

dependence, a number of challenges exist in detecting such dynamical behaviour.

Firstly, the strength of a nonlinear signal in the data may be weakened by the ability

of traders to perceive and trade against these patterns (LeBaron, 1994). Secondly,

multiple interactions between market participants and rapid economic fluctuations

result in high dimensionality in financial time series (Kyrtsou and Serletis, 2006).

Such high dimensionality can lead to nonlinear chaotic time series which are, for all

practical purposes, indistinguishable from random data (Hsieh, 1991). In fact,

pseudo-random number generators often use chaotic systems to generate random

looking numbers. Thirdly, financial time series are finite and noisy, which poses a

challenge in the estimation of statistics that are used to detect the signature of chaotic

2In this chapter, when we speak of nonlinear systems and nonlinear time series we are referring to
data generated by a system of nonlinear equations. These can be either completely deterministic or
stochastic nonlinear equations. In such systems we may be able to detect nonlinear dependence, i.e.
where the current observation of a time series depends on past observations and the functional form of
that dependence is nonlinear. Refer to Chapter 3 for more details on nonlinear dynamical systems.

3Chapter 5 discusses a number of studies which provide examples of bifurcations in real world dy-
namical systems.
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dynamics, such as the correlation dimension and Lyapunov exponent (Kyrtsou and

Serletis, 2006)4. However, if financial time series are not too complex, and the signal

to noise ratio is sufficient, short term predictability may be exploitable and nonlinear

models may be used to improve forecastability.

Despite the challenges, many empirical studies have presented evidence for and

against nonlinear structure in financial time series. Brock and Sayers (1988) use the

Grassberger and Procaccia (1983) (henceforth GP) correlation dimension5 to detect

chaotic dynamics in the residuals of an AR model applied to macroeconomic data,

finding that, once linear serial correlation is removed, no chaotic dynamics are

detected. Scheinkman and LeBaron (1989) use the GP algorithm on the residuals of

an ARCH model applied to U.S. stock returns, finding evidence of low dimensional

chaos. The authors find a correlation dimension lower than the theoretical 2 log10N

Ruelle (1989) limit, indicating the presence of low dimensional chaotic dynamics.

Ruelle (1989) however, states that the result is likely due to remaining smoothness in

the data following filtering using AR and ARCH models. Hanias, Curtis, and

Thallasinos (2007) apply the GP methodology directly to stock prices of the Athens

stock exchange using a large time lag to reduce dependence in the data, finding

evidence of low dimensional chaos.

There are a number of problems in applying the GP algorithm to financial data, in

particular the difficulty of picking an appropriate scaling region and the lack of an

asymptotic distribution for statistical inference6. As a result, Brock, Dechert, and

Scheinkman (1987) (henceforth BDS) test statistic was developed, which introduced

an asymptotic distribution theory for statistics based on the correlation integral. The

null hypothesis of the test is that the data being tested is IID. The BDS test is

generally applied to financial data after an appropriate model is fitted to remove any

serial correlation and volatility clustering in the data. If the model is correctly

specified, the resulting residuals should be IID. Thus, when applied to the

standardised residuals of a well specified model, rejection of the null hypothesis

4As discussed in Chapter 3, the correlation dimension is a measure of the degree to which an attractor
fills up phase space for a given dimension, whereas the Lyapunov exponent is a measure of sensitivity
to initial conditions. Both are used as tests for deterministic chaos.

5The correlation dimension is outlined in Equations 3.9–3.11 of Chapter 3
6See Ruelle (1989) and Kyrtsou and Serletis (2006) for an overview.
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provide indirect evidence of nonlinear dependence in the data. Evidence of nonlinear

dependence has been found using the BDS test in stock markets (Scheinkman and

LeBaron, 1989; Hsieh, 1991), macroeconomic data (Brock and Sayers, 1988),

derivatives data (Moloney and Raghavendra, 2011) and exchange rates (Brooks, 1996;

Kyrtsou and Serletis, 2006). Hsieh (1991) finds that, while the BDS test rejects the null

of IID for GARCH and EGARCH standardised residuals of stock returns, a more

generalised variance model removes the remaining structure in the data and the BDS

test accepts the null of IID residuals7.

The BDS test provides a powerful statistic and lends itself effectively to the

examination of the adequacy of models that assume IID residuals. It is not a test for

non-linearity or chaos, and offers no information on the type of dependence detected

in the residuals. Surrogate data analysis (Theiler et al., 1992) can provide information

in this regard by computing an invariant statistic8 on the data being tested. This

statistic is then compared to the same invariant statistic computed on Monte Carlo

generated time series that are consistent with some null hypothesis regarding the

data but otherwise random. For example, if the tester believes that the data is

generated by a nonlinear dynamical system he/she will use a linear, stochastic model

to generate the surrogate data (Soofi et al., 2014). Thus, the null hypothesis is that the

data is generated by a linear, stochastic system. Rejection of the null occurs if the

invariant statistic computed on the original data falls outside the distribution of

statistics calculated on the surrogate data.

A number of algorithms have been developed for generating data consistent with

different null hypotheses (Theiler et al., 1992; Schreiber and Schmitz, 1996;

Kugiumtzis, 2002a; Schreiber, 1998; Small, Yu, and Harrison, 2001). A body of

literature exists that applies surrogate data tests for nonlinearity to financial time

series. Evidence of nonlinear structure can be found for exchange rates (Soofi and

Galka, 2003; Zhang, Soofi, and Wang, 2011) and for stock markets (Small and Tse,

2003); however, evidence of deterministic chaos is limited. The lack of evidence for
7Hsieh (1991) models the current standard deviation as a function of lagged standard deviation but,

unlike the ARCH and GARCH specifications, includes an innovation variable in the variance equation.
8Small (2005) defines an invariant statistic as a quantity which describes aspects of the dynamical

behaviour of a system and does not depend on the coordinate system, i.e. the invariant calculated on the
original system will be the same as that calculated on the delay embedding reconstruction.
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deterministic chaos may be due to the unavailability of methods that can separate

chaotic dynamics from exogenous noise (Das and Das, 2007).

In this chapter, we apply a number of tests for nonlinearity to the returns of stock

market indices and sovereign bond yields in the periods preceding the global

financial crisis and Eurozone sovereign bond crisis respectively. We find mixed

evidence for the presence of nonlinear dependence in the data, focusing on the BDS

test and surrogate data analysis applied to standardised GARCH residuals. Stronger

evidence exists for nonlinear dependence in sovereign bond yield returns than for

stock returns; however, the results are sensitive to the methodology used. Section 4.2

explains the BDS methodology in more detail and provides details of the algorithms

used to generate the surrogate data sets, as well as the invariant statistics used for

hypothesis testing. Section 4.3 describes the stock index and sovereign bond samples.

In Section 4.4 the results of the BDS tests and the surrogate data analysis are

presented. Finally, in Section 4.5 we conclude with a brief discussion of the results

and their implications.

4.2 Methodology

4.2.1 BDS Test

The BDS test is a test for nonlinearity based on the correlation integral. The null

hypothesis of the test is that the time series under analysis is IID. It was originally

designed as a test for deterministic chaos, but also as a test of goodness of fit when

applied to the residuals of a model (Brock et al., 1996). The BDS test statistic uses the

fact that the correlation integral is a measure of the probability that two points in

embedding space are closer than a given distance (ε). The correlation integral, Cde(ε),

is the continuous time version of the correlation sum described in Equation 3.9 of

Chapter 3. If the points are independent of each other, then the probability of two

points being closer than ε in de dimensions will be the probability that they are closer
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than ε in one dimension to the power of de, or

Cde(ε) = [C1(ε)]de (4.1)

The standardized BDS statistic is estimated as

BDS =

√
n(Cde(ε)− [C1(ε)]de)

σde(ε)
, (4.2)

where de is the embedding dimension of the phase space reconstruction and Cde(ε) is

the correlation integral.

No alternate hypothesis is specified for the BDS statistic; therefore, rejecting the null

hypothesis indicates that the times series in question is not IID but does not infer

anything about the type of dependence that remains in the residuals. A key benefit of

the BDS statistic is that it is asymptotically normally distributed with N(0, 1).

Therefore, it is possible to specify critical values and calculate p-values given a large

enough sample (Brock et al., 1996).

As we are using the BDS test for financial time series, we must first apply a GARCH

type model to correct for volatility clustering and apply the test to the standardised

residuals. Lima (1996) states that in order for the BDS statistic to be asymptotically

distributed according to a standard normal distribution, when applied to model

residuals, the model in question must be a linear additive model, or be capable of

being cast in this format. Therefore, in order for GARCH residuals to be compatible,

we must use the log-squared standardised residuals (Caporale et al., 2005).

Where the scaling value is large and volatility clustering is present, the power of the

BDS test is reduced (Moloney and Raghavendra, 2011). The standard method for

carrying out the BDS test is to apply the test over a range of embedding dimensions,

and over a range of scaling values (generally ε/σ between 0.5 and 2) (Brock and

Sayers, 1988). According to Kanzler (1999), asymptotic convergence of the BDS

statistic to the standard normal distribution, as well as the independence of the

probability of falsely rejecting the null hypothesis from the choice of de and ε, may

not hold for small samples. The author carries out a Monte Carlo study where he
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calculates critical values for the BDS statistic over different embedding dimension,

scaling values and sample sizes. In this chapter we use the Kanzler (1999) critical

values for hypothesis testing.

4.2.2 Surrogate Data Analysis

The purpose of surrogate data analysis, as described in Theiler et al. (1992), is to test a

null hypothesis regarding the data generating process that governs the dynamics of

the time series of interest. A number of surrogate data sets are generated, which

preserve the statistical properties of the original data that are relevant to the null

hypothesis but are otherwise random. For example, if our null hypothesis is that of

IID data, any random shuffle of our original time series would provide a surrogate

that is consistent with this hypothesis.

The primary application of surrogate data analysis in the literature is to test for

evidence of nonlinearity. In such tests, surrogate data sets are generated which

preserve the linear dependence structure of the data. An invariant statistic is then

computed on the surrogate data sets and also on the original data. The invariant

statistic should be able to capture nonlinear deterministic behaviour present in the

original data that does not exist in the surrogates. Finally, the distribution of the

statistics is examined. If the statistic calculated on the original data does not fall

within the distribution of statistics calculated on the surrogates we can reject the null

hypothesis.

A number of different methods have been set out in the literature to generate

surrogates consistent with the hypothesis that the original data is generated by a

linear stochastic process. Amongst the most popular are algorithms based on the

Fourier transform. The Wiener Khinchin theorem states that the Fourier transform of

the autocorrelation function of a signal is equal to its power spectrum9 (Kantz and

Schreiber, 2004). Therefore, we can create a surrogate time series with the same

autocorrelation function as the one we are testing by multiplying the Fourier

9The power spectrum is defined as the squared modulus of the continuous Fourier transform and
gives the square of the amplitude by which a frequency contributes to a signal. The discrete series
version of the power spectrum is called the periodogram.
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transform of the data by random phases and then transforming it back to the time

domain (Schreiber and Schmitz, 2000).

Another hypothesis that can be tested using Fourier based surrogates is that

deviations from the normal distribution are caused by a static, invertible,

measurement function. In other words, the data is consistent with a nonlinear

transformation of linear filtered noise. Methods such as the Amplitude Adjusted

Fourier Transform (AAFT) (Theiler et al., 1992) are used to test this hypothesis.

However, the AAFT algorithm has been criticised as the power spectra of the original

and AAFT surrogate can diverge when the sample size is small, and also because the

inversion of the measurement function is not equal the true inversion. This will turn

into a bias in the power spectrum, causing it to be flatter than that of the original data,

and can lead to false rejection of the null hypothesis (Schreiber and Schmitz, 2000).

Schreiber and Schmitz (1996) propose an alternative iterative method (IAAFT) which

will have power spectra practically indistinguishable from the original time series.

Kugiumtzis (2008) states that for AAFT surrogates, if the measurement functions is

non-monotonic, the surrogates cannot match the linear structure of the original time

series. Moreover, a discrepancy occurs in IAAFT due to the iterative process used in

estimation, which starts from a flat spectrum and finishes with the same accuracy of

approximation for each of the surrogates. Kugiumtzis (2008) states that this

discrepancy, when combined with small variance of the spectra of the surrogates,

causes a bias in favour of rejection of the null hypothesis. Kugiumtzis (2002a)

proposes a method for the generation of surrogate data sets that does not suffer from

the biases of the AAFT and IAAFT algorithms, called Statistically Transformed

Autoregressive Process (STAP). The STAP method generates surrogate data sets, Z,

from the original data, X , which are realisations of a scalar linear stochastic process

with the same autocorrelation structure, ρX = ρZ and marginal cdf ΦX = ΦZ

(Kugiumtzis, 2002a). The method is different from the AAFT and IAAFT approaches

as it does not approximate the sample periodogram, instead approximating the

sample autocorrelation and building a proper autoregressive model in order to

generate surrogate data (Kugiumtzis, 2008).

Small and Tse (2003) demonstrate that surrogate data sets consistent with the
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hypothesis of a nonlinear transformation of linearly filtered noise are not able to

capture GARCH effects in financial time series. They find that surrogates generated

using the IAAFT algorithm cause rejection of the null hypothesis when the methods

are applied to daily stock market, gold and foreign exchange returns. Therefore, if we

use IAAFT or STAP surrogate methods to test for nonlinearity in financial time series,

we must do so using standardised GARCH residuals. However, Small and Tse (2003)

highlight two problems testing model residuals for nonlinearity. Firstly, when testing

the model residuals, you are testing the hypothesis that a specific model generated

the data. Secondly, pre-whitening the data using a model can either mask chaotic

dynamics or introduce spurious determinism. Therefore, it is preferable to apply

surrogate data testing directly to the original data and to use surrogate generating

algorithms that can capture the hypothesis being tested.

Small, Yu, and Harrison (2001) propose a methodology based on local-linear

modelling approaches, Pseudo-Periodic Surrogates (PPS), which can mimic minor

nonlinearity in the original data but will not reproduce the dynamics entirely. Small

and Tse (2003) state that this method will generate surrogates which reproduce large

scale dynamics, such as trends or persistence, but should not capture deterministic

chaos or higher order nonlinearity. As such, rejection of the null will imply that the

data may not be modelled by local linear models, autoregressive models or state

dependent noise processes such as GARCH. The Small, Yu, and Harrison (2001)

algorithm is outlined briefly below

Step 1 is to construct a time delay embedding

{xt}Nt=1 7→ (xt, xt−1, ..., xn−de+1) = {st}N−de+1
t=1 , calling A the reconstructed attractor.

In step 2, select a random point in A as an initial condition, z1 ∈ A and let i = 1. In

step 3 choose a nearest neighbour of zi, sj ∈ A according to the probability

distribution

Prob(si = st) ∝ exp
− ‖ st − zi ‖

ρ
, (4.3)

where ρ is the noise parameter. In step 4 set zi+1 = si+1 and if i < N repeat step 3.

The surrogate time series is the first scalar component of zt. The choice of noise

parameter is critical in determining the level of nonlinearity preserved in the
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surrogates. Small and Tse (2003) suggest choosing ρ such that the number of short

segments where the surrogate and original data sets are identical is maximised10.

4.2.3 Invariant Statistics

According to Schreiber and Schmitz (1997), the invariant statistics calculated on the

original data should be sensitive to the kind of nonlinearity present in the data, and it

should be possible to estimate this value with low variance. The measures must be

powerful in discriminating between linear dynamics and weak nonlinear signatures

(Schreiber and Schmitz, 2000). We avoid estimation of the GP correlation dimension

and the Lyapunov exponent due to the issues with estimation for short, noisy time

series discussed in Section 4.1. In this chapter we use a number of statistics which

have been shown to be robust in detecting (weakly) nonlinear dynamics (Schreiber

and Schmitz, 1997; Small and Tse, 2003; Small, 2005; Zhao et al., 2006; Kugiumtzis

and Tsimpiris, 2010). These statistics are

1. Cumulative Mutual Information

2. Algorithmic Complexity

3. Nonlinear Prediction Error

Cumulative Mutual Information: Mutual information between two time series X

and Y , I(X;Y ), is described in Cover and Thomas (1991) as the reduction in the

uncertainty of X due to the knowledge of the value of Y . When used

contemporaneously between two variables, mutual information is a measure of

correlation and can detect both linear and nonlinear relationships. Mutual

information can be expressed as

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (4.4)

where p(x, y) is the joint distribution of X and Y and p(x)p(y) is the product of the

individual probability mass functions of X and Y respectively.

10The authors propose a segment of length 2 is appropriate for financial time series.
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Mutual Information is derived from the concept of entropy, H(X), which is a

measure of uncertainty in a random variable X .

H(X) = −
∑
x∈X

p(x) log p(x) (4.5)

This expression for entropy is called Shannon entropy (Shannon, 1948). The

relationship between entropy and mutual information is given in Cover and Thomas

(1991) as

I(X,Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X) (4.6)

Where H(X | Y ) is the conditional entropy of X given Y and is given by the equation

H(X | Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x | y), (4.7)

where p(x | y) is the conditional probability of x given y. When applied between a

time series and its own lagged values, Mutual information gives a measure of linear

and nonlinear serial dependence. Thus, if mutual information calculated on the

original data is statistically different from mutual information calculated on the

surrogate data, there is evidence of nonlinear serial dependence in the original data.

As proposed in Kugiumtzis and Tsimpiris (2010), we use cumulative mutual

information which sums the magnitude of the mutual information values up to a

given maximum lag. A maximum lag of 5 trading days is deemed to be sufficient due

to the well documented fast decay of correlation dynamics in financial returns. In this

chapter, we estimate mutual information using equi-probable binning.

Algorithmic Complexity: Algorithmic complexity is a measure which allows

testing for deterministic dynamics in surrogate data analysis (Zhao et al., 2006).

When applying the measure to a financial time series data, one must first convert the

high precision data to a sequence of elements from a finite, small set. In this chapter

we convert the data into a binary sequence where the data falls into the binning {0, 1}

with equal probability. After the conversion, we are left with a binary series which is

the same length as the original time series. Algorithmic complexity is then calculated

as the number of sequences one observes in the symbolic sequence as a fraction of the
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maximum possible number of sequences, where the maximum is equivalent to the

number of sequences observed in a random time series (Small, 2005).

The Lempel-Ziv algorithm (Lempel and Ziv, 1976), which forms the basis of many file

compression methods such as WinZip, is used to calculate the complexity of a time

series. The methodology is outlined in Zhao et al. (2006) and described as follows:

For a sequence, S, of length n, where S = (s1, s2, ..., sn). For a binary encoding

system, each si is one of 2 symbols, si ∈ A = [0, 1]. c(n) is the counter of unique

sub-sequences in the sequence S. P and Q are two sub-strings of S; PQ is the

concatenation of P and Q and PQπ is the concatenation of P and Q with the last

symbol deleted. v(PQπ) is the set of all sub-strings of PQπ. The procedure for

calculating algorithmic complexity is as follows.

1. Initialise c(n) = 1, P = s1, Q = s2. Therefore, PQπ = s1. If Q ∈ v(PQπ), leave P

unchanged and update Q = s2s3; if Q /∈ v(PQπ), add one to c(n), update

P = s1s2 and Q = s3.

2. Assume that P = s1s2...sr, Q = sr+1. If Q ∈ v(PQπ), leave P unchanged and

update Q = sr+1sr+2, and again assess whether Q ∈ v(PQπ). Repeat until

Q /∈ v(PQπ) and update c(n) = c(n) + 1. Q is now equal to sr+1sr+2...sr+i and

P should be updated to P = s1s2...srsr+1sr+2...sr+i. Q is then set equal to

sr+i+1

3. Repeat step 2 until Q reaches the last substring of S.

(Lempel and Ziv, 1976) demonstrate that for sequence of length n consisting of d

symbols (for a binary sequence d = 2)

c(n) <
n

(1− 2 (1+logdlogd(dn))
logd(n) )logdn

(4.8)

When n→∞, (1+logdlogd(dn))
logd(n) → 0; therefore, the normalised algorithmic complexity is

calculated as

Comp(n) =
c(n)

n
logd(n) (4.9)
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If algorithmic complexity calculated on the original data is statistically different from

algorithmic complexity calculated on the surrogate data, there is evidence of

nonlinear deterministic dynamics in the original data.

Nonlinear Prediction Error: The Nonlinear Prediction Error is a measure of the

predictability of a time series (Schreiber and Schmitz, 1997). Small (2005) defines the

measure for i time steps into the future as

ef (i) =
∑
t

‖f(xt, i)− xt+i‖, (4.10)

where f(xt, i) is the model prediction of the evolution of xt at time t+ i. The class of

model chosen is important and the nonlinear prediction error is the minimum over

all models. However, as testing the prediction error over all classes of model is

impractical, Small (2005) suggests using a simple model which states that for an

embedded times series, st = (xt, ..., xt−de+1), the best prediction of st+1 will be sm+1,

where sm is the closest neighbour to st. In other words, the prediction is to look at the

time t+ 1 position of the time t closest neighbour. The i step nonlinear prediction

error is then defined in Small (2005) as

E(i) =

√√√√ 1

N − i

N−i∑
t=1

(xt+i − xm+i)2, (4.11)

where the xt+i and xm+i are the first scalar components of st+i and sm+i respectively

and

m = arg min
1≤m≤N−i

m6=t

‖st − sm‖ (4.12)

If the nonlinear prediction error calculated on the original data is statistically

different from the nonlinear prediction error calculated on the surrogate data, there is

evidence of nonlinear predictability in the original data.
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4.3 Data

We obtain 10 year daily sovereign bond yield data for Greece, Ireland and Portugal

from Thomson Datastream. We apply tests for nonlinear determinism to bond yield

returns series of length 500 trading days, 1,000 trading days and 2,500 trading days

preceding the onset of the sovereign debt crisis. The shorter samples allow for testing

of short term nonlinear determinism in the lead-up to the crisis, but the results may

be less robust. The longer samples are more robust, but results may be less sensitive

to short run nonlinear deterministic behaviour. Small and Tse (2003) use surrogate

data analysis to test for non-linear determinism in financial time series, finding the

results to be less robust for sample sizes less than 800 observations. This finding is

due to the critical dependence of algorithms, such as the correlation dimension and

the nonlinear prediction error, on the quantity of data available for testing.

The final observation for each of our samples is the 30th of April 2010. This cut-off

date was chosen due to the fact that the Troika bailout of Greece occurred in May

2010. This event lead to significant increases in bond yields in Portugal and Ireland,

culminating in bailouts in Ireland in December 2010 and in Portugal in May 2011.

Thus, the end of April 2010 is a logical cut-off point.

We also obtain daily stock index data for the Dow Jones Industrial Average, FTSE 100

and NIKKEI 225, and apply the tests for nonlinearity to the daily log-returns. Again

we use sample sizes of 500, 1,000 and 2,500 with a cut-off date of the 28th of

September 2007. This date broadly corresponds to the end of a growth period in each

of the stock markets, which was almost uninterrupted since Q1 2003, and to the onset

of the global financial crisis. Moloney and Raghavendra (2011) apply tests for

nonlinearity to the S&P 500, the FTSE 100 and the NIKKEI 225 using sample sizes of

14,821, 6338 and 6,127 observations respectively, with a cut-off date of the end of

November 2008. While the larger sample is more robust, we hope our approach may

be more sensitive to short-term nonlinear dynamical behaviour which may have

emerged closer to the global financial crisis.

Table 4.1 presents descriptive statistics for each of the bond and stock market

samples. The data are characterised by volatility clustering, fat tails and skewness as
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4.3. Data

evidenced by the ARCH LM test p-value and the Jarque-Bera test statistic. This is in

line with the stylised facts of financial time series discussed in Chapter 1.
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TABLE 4.1: Stock and bond time series: sample and descriptive statistics

Sample and Descriptive Statistics
Dow Jones FTSE 100 NIKKEI 225

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Std. dev. 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Skewness -0.49 -0.27 -0.14 -0.42 -0.42 -0.19 -0.35 -0.49 -0.17
Kurtosis 5.45 4.27 6.7 5.62 6.12 5.58 4.47 4.72 4.79
JB Stat 144.91 79.88 1435.2 157.36 436.38 710.74 54.71 162.5 347.91
JB p-val 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SC LM p-val 0.00 0.23 0.16 0.31 0.08 0.00 0.2 0.47 0.08
ARCH LM p-val 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Start Date 05/10/2005 13/10/2003 29/10/1997 05/10/2005 13/10/2003 29/10/1997 27/07/2005 13/05/2003 27/09/1996
End Date 28/09/2007 28/09/2007 28/09/2007 28/09/2007 28/09/2007 28/09/2007 28/09/2007 28/09/2007 28/09/2007
No. Obs. 500 1,000 2,500 500 1,000 2,500 500 1,000 2,500

Greece 10 yr Ireland 10 yr Portugal 10 yr
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Std. dev. 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Skewness 0.46 0.58 0.68 0.61 0.48 0.61 0.5 0.46 0.57
Kurtosis 6.8 9.6 10.5 5.14 5.47 6.29 6.96 8.13 7.77
JB Stat 319.28 1869.87 6055.36 126.03 293.12 1283.78 347.66 1132.32 2512.04
JB p-val 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SC LM p-val 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
ARCH LM p-val 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Start Date 07/05/2008 12/05/2006 31/05/2000 07/05/2008 12/05/2006 31/05/2000 07/05/2008 12/05/2006 31/05/2000
End Date 30/04/2010 30/04/2010 30/04/2010 30/04/2010 30/04/2010 30/04/2010 30/04/2010 30/04/2010 30/04/2010
No. Obs. 500 1,000 2,500 500 1,000 2,500 500 1,000 2,500
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4.4. Results

4.4 Results

4.4.1 BDS Test

We apply the GARCH(1,1) model, as outlined in Chapter 1, to each of sample sizes

for our sovereign bond and stock market log-returns series. Serial Correlation LM

and ARCH LM tests are then used to test for remaining linear serial correlation and

conditional heteroskedasticity. The GARCH(1,1) specification was sufficient to

remove all conditional heteroskedasticity, as evidenced by insignificant nR2 statistics

in the ARCH-LM test. An AR1 term was added to remove remaining linear serial

dependence for the 500 observation sample of the Dow Jones Industrial Average, the

Greek 10 year bond and the Irish 10 year bond. An AR1 term was also added for the

1,000 observation sample of the Greek 10 year bond.

The standardised residuals of each model are obtained and the log-squared

transformation applied, as recommended in Caporale et al. (2005). The BDS statistic

is then applied to the 18 time series (six stock and bond market series over the three

sample sizes), with embedding dimensions varying from 2 to 7 and scaling regions

0.5σ, 1σ, 1.5σ and 2σ. Brock et al. (1996) state that the standardised BDS test statistic

follows a standard normal distribution if n/de > 200. We note that n/de < 200 for

sample size n = 500 with de = 3, ..., 7 and sample size n = 1, 000 with de = 6, 7.

Therefore, the BDS statistic is estimated and compared to the critical values estimated

by Kanzler (1999) for small samples. We estimate the BDS test statistic on the

log-squared GARCHs residuals using the tseries package in R. The results of the BDS

test using the Kanzler (1999) critical values were compared to the BDS results using

bootstrapped p-values in Eviews. In all cases the significance levels were equivalent

or more conservative using the Kanzler (1999) critical values. A two tail test is

applied, where for a 5% significance level the 2.5% and 97.5% critical values are used.

The results of the BDS test on the GARCH (1,1) residuals are presented in Table 4.2,

Table 4.3 and Table 4.4 for n=500, n=1,000 and n=2,500 respectively. A sensitivity test

was carried out by applying the BDS test to the log-squared standardised residuals of

an EGARCH model applied to the time series under analysis. The results were not

qualitatively different from those presented for the GARCH model. The results for
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the EGARCH model are presented in the appendices to this chapter. We also

compare all significant results to those obtained from a GARCH(1,2) model, finding

that the results are consistent with those presented in Tables 4.2– 4.4. Similarly to the

results presented in Moloney and Raghavendra (2011), in all cases the null

hypothesis of IID residuals is accepted for the Dow Jones Industrial Average, FTSE

100 and NIKKEI 225. This indicates that the GARCH (1,1) model sufficiently captures

nonlinear dependence in the stock market indices under examination in the lead-up

to the global financial crisis.

TABLE 4.2: BDS Statistic for Log Squared GARCH Residuals, N=500. *,
** and *** indicate significant at the 10%, 5% and 1% respectively using

a two-tailed test.

m Dow FTSE NIKKEI Gre Irl Port
ε/σ = 0.5

2 -0.68 -1.34 -0.18 1.8 -1.7 0.7
3 -0.87 -0.68 -0.39 2.04 -2.38* 1.01
4 -0.53 -0.02 -0.58 2.18 -2.50* 1.31
5 -1.31 0.51 0.25 1.55 -2.22 0.89
6 -1.71 -0.01 0.18 0.71 -1.97 0.16
7 -2.91 -0.17 0.5 0.56 -2.65 -0.45

ε/σ = 1
2 -1.21 -0.51 -0.36 1.88* -1.63 -0.46
3 -0.67 -0.33 -0.77 2.11* -2.28** -0.3
4 -0.25 0.33 -0.69 2.35** -2.36** -0.28
5 -0.58 0.85 -0.5 2.08* -2.29** -0.37
6 -0.69 0.81 -0.57 1.8 -2.39** -0.6
7 -0.7 0.64 -0.58 1.65 -2.08** -0.93

ε/σ = 1.5
2 -0.64 -0.24 -0.75 1.95* -0.59 -0.49
3 -0.43 -0.18 -0.88 2.26** -1.2 -0.4
4 -0.02 0.05 -0.69 2.33** -1.47 -0.65
5 -0.19 0.42 -0.56 2.02* -1.48 -0.82
6 -0.22 0.32 -0.63 1.75* -1.45 -1.13
7 -0.33 0.14 -0.61 1.61 -1.18 -1.38

ε/σ = 2
2 0 -0.06 -0.7 1.83* 0.02 -0.08
3 0 0.06 -0.76 1.76* -0.44 -0.14
4 0.22 0.3 -0.47 1.59 -0.97 -0.47
5 0.15 0.49 -0.3 1.18 -1.15 -0.76
6 0.34 0.4 -0.42 1.04 -1.08 -1.12
7 0.36 0.34 -0.51 0.96 -0.84 -1.39

The results for the sovereign bond markets are somewhat more interesting. For the

Greek 10 year bond, using a sample size of 500, the null hypothesis of IID residuals is

rejected at a 10% significance for de = 2, 3 and 5, and at a 5% significance for de = 4

with ε = 1σ. However, bearing in mind that the BDS statistic should have power to

reject the null hypothesis independent of the choice of de, the negative result for de =

6 and 7 does not allow for a definitive conclusion of non-IID residuals. For ε = 1.5σ
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the results are again inconclusive due to the failure to reject the null of IID residuals

for de = 7. For n = 1, 000 the results are much more conclusive for the Greek

sovereign bond data. Using ε greater than or equal to 1σ, the null hypothesis of IID

residuals is rejected for all embedding dimensions with at least 10% significance.

TABLE 4.3: BDS Statistic for Log Squared GARCH Residuals, N=1000.
*, ** and *** indicate significant at the 10%, 5% and 1% respectively

using a two-tailed test.

m Dow FTSE NIKKEI Gre Irl Port
ε/σ = 0.5

2 -0.42 -1.05 0.31 1.89* -1.15 0.5
3 -1.32 -0.91 -0.29 1.78 -1.67 0.31
4 -0.81 -0.2 0.11 2.62** -1.2 0.39
5 -0.7 -0.14 0.51 2.36 -0.87 0.4
6 -1.12 -0.43 0.28 2.12 -0.93 0.13
7 -1.62 -0.38 0.03 1.99 -0.7 -0.09

ε/σ = 1
2 -0.8 -0.24 0.21 1.85* -0.83 0.54
3 -0.74 -0.18 -0.27 2.05* -1.66 0.36
4 -0.36 0.5 0 2.73** -1.47 0.43
5 -0.47 0.77 0.3 2.82** -1.08 0.6
6 -0.57 0.73 0.2 2.92** -0.78 0.71
7 -0.72 0.63 0.25 2.91** -0.58 0.7

ε/σ = 1.5
2 0.07 0.26 0.16 1.89* -0.74 1.08
3 0.3 0.62 -0.21 2.26** -1.29 1.05
4 0.68 1.4 -0.11 2.73** -1.15 1.04
5 0.62 1.77* -0.02 2.79** -0.85 1.03
6 0.52 1.73* -0.15 2.92*** -0.54 1.03
7 0.22 1.61 -0.13 2.96*** -0.36 1.04

ε/σ = 2
2 0.79 0.7 -0.23 2.03* -0.14 2.15**
3 1.02 0.94 -0.4 2.34** -0.59 2.16**
4 1.24 1.64 -0.23 2.48** -0.58 1.98*
5 1.11 1.93* -0.11 2.39** -0.43 1.73*
6 1.08 1.80* -0.26 2.43** -0.27 1.54
7 0.95 1.79* -0.28 2.53** -0.16 1.51

The results for Ireland are negative for n = 1, 000 and n = 2, 500. However for

n = 500 and ε = 1σ the null hypothesis is rejected at the 5% level for all but de = 2.

These mixed results do not provide conclusive evidence of remaining dependence

structure in the GARCH residuals of the Irish sovereign bond. Finally, the results for

Portugal are negative for n = 500 and n = 1, 000. However, for n = 2, 500 the null of

IID residuals is rejected across all scaling regions and embedding dimensions,

providing strong evidence of remaining dependence structure in the GARCH

residuals.

The results presented above indicate that for the Greek and Portuguese government

bond samples, the GARCH(1,1) model cannot capture the entire dependence
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TABLE 4.4: BDS Statistic for Log Squared GARCH Residuals, N=2500.
*, ** and *** indicate significant at the 10%, 5% and 1% respectively

using a two-tailed test.

m Dow FTSE NIKKEI Gre Irl Port
ε/σ = 0.5

2 0.3 -0.06 -0.17 0.12 -0.31 2.97***
3 -0.67 -0.5 -0.39 0.56 -1.03 3.02***
4 -0.82 -0.3 -0.02 1.05 -1.21 2.89**
5 -1.09 0.08 0.55 1.43 -0.97 3.24**
6 -1.07 0.21 0.39 1.74 -0.55 3.68***
7 -1.26 0.29 0.66 1.72 -0.52 3.81**

ε/σ = 1
2 -0.08 -0.06 0.15 0.43 0.12 4.31***
3 -0.59 -0.5 -0.09 0.67 -0.8 4.12***
4 -0.45 -0.3 0.34 0.91 -0.99 3.85***
5 -0.36 0.08 0.94 1.18 -0.63 3.96***
6 -0.34 0.21 1.02 1.54 -0.42 3.98***
7 -0.41 0.29 1.25 1.64 -0.36 3.84***

ε/σ = 1.5
2 0.72 0.05 0.06 1.04 0.48 6.79***
3 0.37 0.12 -0.16 0.98 -0.44 6.42***
4 0.56 0.51 0.07 1 -0.68 5.93***
5 0.67 0.93 0.49 1.05 -0.46 5.71***
6 0.73 1 0.54 1.4 -0.36 5.43***
7 0.61 1.18 0.72 1.49 -0.37 5.14***

ε/σ = 2
2 1.3 -0.61 0.04 1.49 0.7 9.28***
3 1.04 -0.08 0 1.08 0.06 9.07***
4 1.13 0.47 0.13 0.93 -0.02 8.60***
5 1.21 0.82 0.39 0.85 0.14 8.17***
6 1.3 0.88 0.47 1.06 0.13 7.60***
7 1.21 1.14 0.63 1.08 0.12 7.10***

structure of the data in the lead-up to the sovereign debt crisis. The mixed results for

the Irish government bond sample with n = 500 requires further investigation. In the

following section we will further investigate the results presented above using

surrogate data methods.

4.4.2 Surrogate Data Analysis

A key weakness of the BDS test is that it cannot tell us anything about the type of

dependence structure in the standardised GARCH residuals. It can only tell if the

data is IID or not. Small and Tse (2003) state that acceptable alternate hypotheses

include linear noise, nonlinearity, chaos, non-stationarity or persistent processes.

Moreover, where the null hypothesis is rejected when applied to standardised

residuals, the rejection of the null may be due to misspecification of the model or the

wrong choice model from a particular family of models. We attempt to offset the risk
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of misspecification, or poor model choice, by applying both GARCH and EGARCH

models and by testing the residuals using the serial correlation LM test and ARCH

LM test. However, surrogate data analysis can provide us with more information

regarding the type of dynamical system which is generating the results.

In this section we present the results of two null hypotheses using surrogate data

analysis. Firstly, using the Kugiumtzis (2002a) STAP surrogates, that the financial

time series represent a static transformation of linearly filtered noise 11. Secondly we

use the PPS algorithm of Small, Yu, and Harrison (2001), with the null hypothesis

that the data may be adequately modelled by local linear models, autoregressive

models or state dependent noise processes, such as GARCH processes. Moreover,

our choice of invariant statistics provides more information on the type of dynamical

system which is generating the data, if the null hypothesis is rejected.

FIGURE 4.1: Dow Jones Industrial Average log-returns forN = 2500
up until the 28/09/2007 (top panel). Simulated GARCH data gen-
erated using GARCH(1,1) model fitted to the Dow Jones Industrial

Average log-returns (bottom panel)

11The IAAFT framework of Schreiber and Schmitz (1996) is also consistent with this hypothesis and the
results of surrogate data analysis using this framework are presented in the appendices to this chapter.
The results are not qualitatively different from the STAP results.
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In order to demonstrate the power of the STAP and PPS data to test against the above

null hypotheses, we fit a GARCH(1,1) model to the Dow Jones Industrial Average

2,500 observation sample described in the Section 4.3. We use the parameter values

for the model to generate a random time series with similar GARCH properties to the

real data. The original data and simulated time series are presented in Figure 4.1. We

calculate Pearson’s cumulative autocorrelation (5 lags), cumulative mutual

information (5 lags), algorithmic complexity and nonlinear prediction error12 for the

GARCH time series and also for surrogate data sets generated using the STAP and

PPS methods. 100 surrogate time series were generated for each of the surrogate data

algorithms. The results are presented in Figures 4.2 and 4.3, with p-values generated

using t-tests.

The Pearson cumulative autocorrelation function can be seen as a test for the correct

specification of the surrogate data sets. If the Pearson cumulative autocorrelation

calculated on the original data is statistically different from the statistics calculated

on the surrogate data sets, this means there is linear dependence in the data which is

not preserved in the surrogates (Kugiumtzis and Tsimpiris, 2010). In both Figure 4.2

and Figure 4.3 the autocorrelation statistic falls within the distribution; therefore, the

surrogate data sets are correctly generated.

The results of the simulation exercise using the STAP surrogates presented in Figure

4.2 demonstrate that we can reject the null hypothesis of a static transformation of

linearly filtered noise for the simulated data, using cumulative mutual information

and the nonlinear prediction error. This is expected because data generated by the

GARCH family of models do not fall within this hypothesis. Interestingly, the

algorithmic complexity statistic does not detect any differences between the GARCH

data and the surrogate time series. If algorithmic complexity were used in isolation,

this would indicate that no nonlinear deterministic dynamics were present in the

data. These results imply that, if we wish to further investigate the results of the BDS

tests using STAP generated surrogates, we must apply the test to the standardised

GARCH residuals rather than to our original financial time series.

12An embedding dimension of 7 and time lag of 1 were used for both the calculation of the nonlinear
prediction error and the generation of PPS surrogates.
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FIGURE 4.2: Results of STAP surrogate data analysis applied to simulated
GARCH(1,1) process.

PPS data can capture non-stationarity and drifts, locally linear nonlinearities and

non-stationarity in the variance (Small and Tse, 2003). As expected, the PPS surrogate

results in Figure 4.3 fail to reject the null hypothesis that the simulated GARCH data

may be adequately modelled by local linear models, autoregressive models or state

dependent noise processes. Therefore, the PPS surrogate data sets have preserved the

conditional heteroskedasticity in the simulated GARCH series. This implies that we

can apply PPS surrogate data methods directly to our original log-returns series in

order to test for nonlinearities in the data, beyond those which can be explained

using GARCH modelling techniques.

The results of the surrogate data analysis of the stock and bond market samples are

presented in Tables 4.5 and 4.6. As discussed above, the STAP surrogate testing was

applied to the standardised GARCH residuals, whereas the PPS analysis was applied

directly to the log-returns of the original data. 1,000 surrogate data series are

generated using each of the surrogate algorithms, and invariant statistics are

calculated on the original data (standardised GARCH residuals or raw returns
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FIGURE 4.3: Results of PPS surrogate data analysis applied to simulated
GARCH(1,1) process

depending on the algorithm). False Nearest Neighbours and the first zero of Average

Mutual Information were used to determine the embedding dimension and time lag

for generation of the PPS data and the calculation of the nonlinear prediction error.

An embedding dimension of 7 and a time lag of 1 were used in all cases. A

probability value is obtained by calculating a test statistic and applying a Student’s T

test.

TestStatistic =
µ− µs
σs

, (4.13)

where µ is the invariant statistic calculated on the original time series, µs is the mean

of the invariant calculated on the surrogate data sets, and σs is the standard deviation

of the invariant calculated on the surrogate data series. This method for generating

p-values assumes a Gaussian distribution for the invariant statistic, which may not

hold up in reality. Kugiumtzis (2002b) suggest this approach is valid, provided the

invariant statistics calculated on the surrogate data sets are approximately normally

distributed. For simplicity of presentation we present the p-values in Tables 4.5 and

4.6; however, we have also examined the rank ordering of the invariant statistics to
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confirm significance in all cases.

Turning our attention to Table 4.5, looking at the equity indices we find evidence of

nonlinearity in the data. For example, the insignificant Pearson’s cumulative

autocorrelation statistic indicates that the surrogates are preserving the linear

dependence structure in all cases. The results of the STAP surrogate data analysis for

the stock market differ from those generated using the BDS test. For the Dow Jones

Industrial Average we find a significant algorithmic complexity statistic and a

significant cumulative mutual information statistic for n = 500. This indicates that

nonlinear deterministic dynamics and nonlinear serial dependence are detectable in

the standardised GARCH residuals of the returns series. Moreover, as we have seen

from the simulation exercise above, the algorithmic complexity variable does not

detect GARCH effects. Therefore, the remaining structure in the data is likely not

conditional heteroskedasticity caused by a mis-specified GARCH model. For the

Dow Jones n = 2, 500 series, the FTSE n = 2, 500 series, the NIKKEI n = 500 and the

NIKKEI n = 2, 500, the cumulative mutual information statistic is the only significant

invariant statistic. A significant cumulative mutual information statistic, coupled

with an insignificant Pearson’s cumulative autocorrelation statistic, indicates that

there is some remaining serial dependence in the data and that the dependence is

nonlinear.

The result for the sovereign bond series in the lower half of Table 4.5 also show

evidence of nonlinearity and are somewhat similar to the results of the BDS test. The

nonlinear prediction error is significant for the Irish 10 year bond with n = 500, as is

the BDS statistic. The nonlinear prediction error uses a local model to determine the

level of nonlinear predictability in the data. The results for the Irish 10 year bond

indicates that the predictive power of the data is worse than the surrogates, as the

prediction error is in the upper tail of the surrogate distribution. This may seem

counterintuitive; however, Small and Tse (2003) find similar results in financial time

series. They state that if the predictive power of the data is greater than that of the

surrogates, it would indicate that a local linear model could be used for profitable

trading. Therefore, the lower predictive power indicates that local linear models

cannot adequately capture the dynamics of the underlying data generating process.
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For the Portuguese 10 year bond n = 2, 500 series, we find a highly significant

cumulative mutual information statistic, implying nonlinear serial dependence in the

standardised GARCH residuals. This is consistent with the results of the BDS test.

Interestingly, none of the statistics are significant for the Greek 10 year series. This

means that the significant results of the BDS test for n = 1, 000 may be due to some

remaining linear structure not captured in the GARCH modelling framework,

despite insignificant serial correlation LM tests. The result for the Greek series,

coupled with significant results for some of the stock market indices, may indicate a

difference in the power BDS test and the STAP surrogate test.

Finally, we turn out attention to the results of the pseudo-periodic surrogates in Table

4.6. The results are very different from those presented for the BDS test and the STAP

surrogate data analysis. For the stock indices, the nonlinear prediction error is

significant for the NIKKEI n = 500 series, and the algorithmic complexity statistic is

significant for the NIKKEI n = 2, 500 time series. For the bond markets, only the

nonlinear prediction error is significant for the Ireland 10 year n = 2, 500 series. The

variation in the results may be due to the fact that the previous tests were conducted

on model residuals, whereas the PPS surrogate data analysis was conducted directly

on the returns series. As discussed in Section 2, this may be due to spurious

determinism introduced due to the pre-whitening of the data. Small and Tse (2003)

offer an alternate explanation: that the local linearity of the PPS series mean that data

generated by mildly nonlinear systems may also lead to insignificant results. Kantz

and Schreiber (2004) explain that a local linear model fit to a particular point in phase

space represents a linear approximation of the global nonlinear dynamics at that

point. The collection of all local linear models constitutes a nonlinear dynamic.

Therefore, additional nonlinear dependence, above that explained by the GARCH

modelling framework, may not be picked up by the PPS surrogate data framework if

the strength of the nonlinear signal is weak compared to the large scale dynamics.
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TABLE 4.5: STAP Surrogate p-values for the nonlinear prediction error (NLPE), algorithmic complexity (Comp), Pearson’s cumulative mutual information (Pear) and
cumulative mutual information (Mut). 1000 surrogates are used in testing. 10% significance is highlighted in yellow, 5% in orange and 1% in red.

Dow Jones FTSE NIKKEI
N NLPE Comp Pear Mut NLPE Comp Pear Mut NLPE Comp Pear Mut

500 0.21 0.04 0.45 0.02 0.12 0.47 0.19 0.64 0.18 0.49 0.12 0.02
1000 0.16 0.97 0.45 0.44 0.22 0.88 0.11 0.96 0.38 0.64 0.25 0.80
2500 0.41 0.72 0.19 0.09 0.64 0.12 0.51 0.04 0.64 0.36 0.15 0.02

Greece Ireland Portugal
N NLPE Comp Pear Mut NLPE Comp Pear Mut NLPE Comp Pear Mut

500 0.18 0.97 0.16 0.51 0.06 0.47 0.65 0.64 0.88 0.19 0.47 0.83
1000 0.75 0.65 0.31 0.79 0.18 0.86 0.13 0.48 0.87 0.32 0.12 0.31
2500 0.98 0.68 0.17 0.99 0.55 0.36 0.25 0.48 0.59 0.98 0.23 0.00

TABLE 4.6: Pseudo-Periodic Surrogate p-values for the nonlinear prediction error (NLPE), algorithmic complexity (Comp), Pearson’s cumulative mutual information
(Pear) and cumulative mutual information (Mut).1000 surrogates are used in testing. 10% significance is highlighted in yellow, 5% in orange and 1% in red.

Dow Jones FTSE NIKKEI
N NLPE Comp Pear Mut NLPE Comp Pear Mut NLPE Comp Pear Mut

500 0.30 0.81 0.96 0.83 0.33 0.70 0.51 0.52 0.05 0.65 0.48 0.91
1000 0.12 0.79 0.96 0.58 0.34 0.61 0.51 0.98 0.27 0.48 0.13 0.95
2500 0.24 0.92 0.91 0.42 0.39 0.48 0.41 0.30 0.23 0.07 0.64 0.82

Greece Ireland Portugal
N NLPE Comp Pear Mut NLPE Comp Pear Mut NLPE Comp Pear Mut

500 0.60 0.33 0.73 0.66 0.64 0.81 0.88 0.52 0.84 0.84 0.93 0.87
1000 0.54 0.20 0.82 0.36 0.31 0.76 0.96 0.77 0.93 0.73 0.84 0.79
2500 0.25 0.16 0.87 0.54 0.05 0.68 0.98 0.21 0.33 0.68 0.97 0.28
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4.5 Conclusion

A key finding of this chapter is the difficulty providing robust results when testing

for nonlinearity in financial time series. This is due to the finite, noisy nature of

financial data. That said, we provide some mixed evidence for (weak) nonlinearity,

particularly in sovereign bond yield data in the lead-up to the Eurozone sovereign

debt crisis. The BDS test and the STAP surrogate data test provide consistent

evidence of nonlinear structure in the standardised GARCH residuals of the Irish 10

year bond returns for n = 500, and the Portuguese 10 year bond returns for n = 2500.

The lack of significant results for the PPS surrogate data tests applied to the same

samples may be due to the fact that the null hypothesis of the PPS surrogates includes

mildly nonlinear data generating processes. Thus, if the nonlinear signal in the data

is weak relative to level of noise, or if the data generating process is high dimensional

deterministic, the PPS tests may not have sensitivity to detect the nonlinearity. The

significant BDS results for the Greek 10 year bond returns is contradicted by both the

STAP and PPS surrogate data analysis. This indicates that the BDS results may be

due to remaining linear dependence in the standardised GARCH residuals.

The results for the stock indices are even more inconclusive. The BDS test finds no

evidence of nonlinear dependence in stock indices. This is in line with the results

presented in Moloney and Raghavendra (2011). However, the STAP surrogate testing

indicates evidence of nonlinear serial dependence and nonlinear determinism in the

standardised GARCH residuals of the Dow Jones index for n = 500, and nonlinear

serial dependence in the residuals of the Dow Jones (n = 2, 500), FTSE (n = 2, 500 )

and NIKKEI (n = 2, 500). Similarly to the results for the bond samples, the PPS

surrogate data tests applied to the stock market results are much less significant, with

evidence of nonlinearity found only in the NIKKEI n = 500 and n = 2, 500 time

series. We can only hypothesise that the mixed results are due to a weak signal to

noise ratio, or high dimensional deterministic dynamics. The results indicate that the

signal to noise ratio may be weaker for stock market indices than for sovereign bond

markets, as evidenced by insignificant BDS test results for the indices.

The implication of these results are two-fold: firstly, there is large scope for further
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research into nonlinearity in financial time series in the lead-up to financial crises,

using more sophisticated filtering techniques to improve the signal to noise ratio

without introducing spurious determinism, or destroying the signal. For example,

Antoniou and Vorlow (2005) propose that wavelet methods may reduce the level

noise and preserve delicate nonlinear deterministic dynamics in the data, which may

be masked by the amplification of noise following log-differencing. Secondly, the fact

that some mixed evidence exists for nonlinearity in stock and bond market data in

the lead-up to crises opens up the possibility that such time series may be generated

by nonlinear dynamical systems. It is well documented in the literature that both

stochastic and deterministic nonlinear dynamical systems experience bifurcations.

As a result, we believe that further research is warranted into the possibility that

financial crises can be explained as bifurcations in nonlinear dynamical systems.

A key question in this regard is: if nonlinearity in financial time series is weak, is it ok

to use linear models as a simple proxy for the deterministic structure? There are two

potential perspectives. Firstly, linear models may be appropriate if we are looking to

fit a model and test for a relationship between dependent and independent variables.

However, a second perspective is if linear models are fit to the data, and the residuals

are assumed to be IID, then the use of VaR or other stochastic risk indicators may

provide inaccurate results, particularly during times of crisis. The second perspective

is particularly important if the nonlinearity that is present in the financial series

pushes the market towards a critical threshold, where instabilities in the system

build-up over time and lead to an abrupt regime shift. The remainder of this thesis

examines this perspective further by analysing sovereign bond and stock markets for

evidence of a build-up of instabilities, and regime shifts, during financial crises.
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Chapter 5

Critical Transitions in Financial

Markets

5.1 Introduction

The financial history of the last century unequivocally points to the stylized fact that

financial markets undergo large and abrupt transitions following a prolonged phase

of stability, or bullish growth. As discussed in Chapter 1, the most common approach

to financial market analysis is the linear stochastic framework, which is essentially an

equilibrium approach and examines the issue of financial crises by looking at the

deviations from the steady state (i.e. “normal times”) following a stochastic shock.

The alternative is to take a complex systems approach, examine the possibility of

multiple steady states in financial markets, and investigate market crashes using the

concepts of bifurcations, or regime shifts, in nonlinear dynamical systems. Using this

framework we can investigate the use of an emergent property of complex systems

approaching regime shifts, namely critical slowing down, to develop early-warning

signals of financial crises1.

When a regime shift occurs in a dynamical system, the system switches abruptly

between alternate steady states (equilibria) and displays qualitatively different

behaviour to the original state. Once the regime shift has occurred, the system can

linger in the alternate state for a long period of time. For instance, consider the

sovereign bond yield to maturity for Greece, Ireland and Portugal, the so called

1Refer to Chapter 1 for a discussion of emergent phenomena in complex systems
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“peripheral countries”, before and during the Eurozone debt crisis (see Figure 5.1). It

is clear that the bond yields go from a period of low stable yields to a period of high

volatile yields. The stable yield regime, which begins soon after the introduction of

the Euro in 2001, ends in late 2009 – early 2010 and is followed by sharp increases in

sovereign yields, with increased volatility across all the three countries. After the

transition the markets remain in the high yield state for a prolonged period of time.

FIGURE 5.1: 10yr Sovereign Benchmark Bond Yield for Greece, Ireland and Portugal
01/01/2002-28/05/2012

Calvo (1988), in a seminal paper, proposed that multiple equilibria may exist in

sovereign debt markets in which public debt is auctioned without an effort to

manage market expectations or interest rates. The author postulates that the role of

interest rates, and thus the burden of debt, is central to expectations of investors and

the probability that sovereign debt will be (partially) repudiated. De Grauwe (2011)

discussed how the Eurozone sovereign debt crisis may provide an example of

multiple equilibria in financial markets. The author outlines that in a monetary

union, such as the Eurozone, countries lose control over their own money supply.

Therefore, in the event of a national sovereign debt crisis the central bank cannot step

in to provide liquidity. Debt dynamics may become self-fulfilling, causing the

economy to switch from a “good” equilibrium (solvency) to a “bad” equilibrium

(default) when faced with a sudden stop of capital. This happens if liquidity

suddenly dries up for the country’s sovereign bond market, causing an increase in
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the interest rate at which the country can access debt markets. When this happens,

what was originally a liquidity crisis can transform into a solvency crisis. In the

absence of the central bank stepping in to provide liquidity, this can cause default or

a bailout such as those seen for Greece, Ireland and Portugal during the Eurozone

crisis. In this situation the investors’ fears regarding the solvency of a country

become self-fulfilling.

Models of self-fulfilling expectations gained popularity in the literature on

speculative attacks on a currency within a fixed exchange rate system. Obstfeld

(1996) develop a model which allows for the possibility of multiple equilibrium

devaluation probabilities when faced with a speculative attack. In the Obstfeld (1996)

model, the level of economic fundamentals determines the range of possible

devaluation probabilities, or equilibria, in the system. Depending on fundamentals,

and in turn level of reserves the government is willing to commit to defend the

currency, there are multiple possible outcomes. The intermediate state of

fundamentals allows for two possible equilibria, where a currency collapse is

possible given a speculative attack, but not certain. This is similar to the “good” and

“bad” equilibria discussed in De Grauwe (2011) for sovereign debt markets.

While the Obstfeld (1996) model is not directly framed in terms of bifurcations, as

discussed in Chapter 3, bifurcations are the mechanism by which equilibria are

created and destroyed in dynamical systems. Jeanne (1997) presents a

second-generation currency crisis model, describing how currency crises can be a

result of either self-fulfilling speculative attacks or bad economic fundamentals.

Jeanne (1997) explicitly uses the framework of bifurcations in economic systems. The

author describes a discontinuous expansion of the set of equilibrium devaluation

probabilities occurring due to changes in economic fundamentals, relating the

dynamical behaviour to the theory of bifurcations in nonlinear systems. In the model,

market expectations become self-fulfilling when fundamentals are within a specific

range, and when the expected net benefit of the fixed peg is negative.

A number of recent contributions to the literature on sovereign debt crises have

developed models which follow the spirit of the second-generation currency crisis

models. In such models, the government minimises a loss function where they will
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continue debt repayments if the net benefit of doing so is positive. Gros (2012) for

example, develops a theoretical model where multiple equilibria in sovereign bond

markets are caused by changes in investors’ required risk premia, which are a

function of a country’s perceived probability of default, the level of debt in the

economy and the cost of raising taxes. The model specifies parameter values for

which both single and multiple equilibria are possible. McHale (2012) outlines a

model which incorporates conditional support from a lender of last resort, for

example the European Central Bank in the case of Eurozone states, in which shifts in

non-interest rate fundamentals can cause the probability of sovereign default to shift

into a region where multiple possible equilibria can occur. In the model, multiple

equilibria occur due to feedback loops between the expected probability of default

and the interest rate, i.e. investors’ expectations become self-fulfilling.

A key challenge in the analysis of economic, financial or other dynamical systems is

the early detection of regime shifts between alternate equilibria. As discussed above,

a number of theoretical models of multiple equilibria in financial markets have been

developed. However, there is little empirical evidence that such models can

effectively predict when the market will undergo a regime shift. Recent progress has

been made in this regard in other fields of study. A large body of literature exists

which provides direct empirical evidence that ecosystems and climate systems

undergo catastrophic regime shifts, where the system abruptly transits from one

steady state to another, referred to as “bi-stable” systems. It is documented that these

bi-stable systems exhibit sudden structural change as the underlying parameters of

the system evolve and reach a certain threshold. The gradual evolution of these

systems prior to the transition masks the underlying changes that are happening, and

makes it difficult to anticipate the impending catastrophic transition. In recent years,

much effort has been expended in the attempt to find consistent, reliable indicators of

regime shifts (Scheffer et al., 2001; Rietkerk et al., 2004; Lenton et al., 2008; Brock and

Carpenter, 2006; Dakos et al., 2008; Scheffer et al., 2009; Hirota et al., 2011). These

indicators, the so-called “early warning signals”, are based on the statistical

properties of the underlying dynamics that drive the evolution of the system.

The primary aim of this chapter is to examine sovereign bond yields of Greece,
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Ireland and Portugal in the lead-up to the Eurozone sovereign debt crisis and ask

whether such early warning signals were present in the case of bond market. In

particular, we test for a phenomenon called critical slowing down (CSD) which has

been shown to precede regime shifts in many real systems (Wissel, 1984; Dakos et al.,

2008; Carpenter et al., 2011; Lenton et al., 2012). We ask the question for two main

reasons, which are in turn the objectives of the chapter. Firstly, were early warning

signals present before the crisis? Secondly, how reliable are these indicators and can

they be used to provide consistent warnings of impending crisis in sovereign bond

markets, or financial markets in general? Furthermore, our research aims to inform

debate regarding the explicit use of bifurcation theory in the development of multiple

equilibria models of sovereign bond markets.

The remainder of the chapter is structured as follows: In Section 5.2 we discuss

theoretical framework that underlie the property of CSD in dynamical systems. In

Section 5.3 we describe the empirical methodology used in the chapter. In Section 5.4

we examine the data used for empirical testing in more detail. In Section 5.5 we

present the results of the empirical testing. Finally, in Section 5.6 we provide some

concluding remarks.

5.2 Theoretical Framework: Bifurcation Theory

The theory of bifurcations has provided a taxonomy of various types of bifurcations.

Chapter 3 of this thesis outlines a number of primary classes of bifurcations which

occur in nonlinear dynamical systems. A particular class of bifurcation that can cause

abrupt regime shifts in dynamical systems is called the fold catastrophe. In the

literature, these are often referred to as critical transitions or catastrophic bifurcation

because the system undergoes abrupt qualitative change as some underlying

parameter passing through a critical threshold (Scheffer et al., 2009). In the following,

we will briefly explain the fold catastrophe and illustrate it with a few examples.

The fold catastrophe can be described in simple terms. Consider a simple

one-dimensional system ẋ = h+ rx− x3. Given r > 0, when h = 0 the system has

two stable fixed points at x = ±
√
r and an unstable fixed point at the origin (x = 0).
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The unstable fixed point acts as a divider that separates the basins of attraction2 of

the two fixed points. The trajectories starting from initial conditions to the left of the

unstable fixed point at the origin, i.e. xt=0 < 0, go to the stable fixed point at

x = −
√
r, while the trajectories starting from initial conditions to the right of the

unstable fixed point at the origin i.e., xt=0 > 0 go to the stable fixed point at x = +
√
r.

However, by varying the parameter h the curve in Figure 5.2 shifts, changing the

location, stability and existence of fixed points. In particular, when h reaches a critical

value, |hcrit| = 2r
3

√
r
3 , the unstable fixed point and the right-hand side stable fixed

point converge and form a semi-stable fixed point. For |h| < hcrit there is only one

fixed point in the system. Essentially, a saddle node bifurcation occurs as the stable

and unstable fixed point converge. As discussed in Chapter 3, the saddle node

bifurcation is the primary mechanism by which equilibria are created and destroyed

in a nonlinear dynamical system.

FIGURE 5.2: ẋ = h+rx−x3 plotted forr > 0 and h = 0, |h| = hcrit and |h| > hcrit.
The black dots indicate a stable fixed point, the white dots an unstable fixed point

and the half-black half-white, a semi stable fixed point.

The fold catastrophe can be understood by examining the stability of the equilibria in

the system using basin of attraction diagrams. Imagine the basin of attraction as a

well: if the walls are steep and we place a ball anywhere other than its deepest point,

the ball will quickly roll down to the deepest point (or global minimum) of the well.

2The basin of attraction of a fixed point is the set of initial conditions that asymptotically lead to that
point.
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However, if the walls are relatively flat, the ball will take relatively more time to

reach the minimum of the well. This is analogous to physical systems where we

know that the potential energy of the well is instrumental in bringing the ball back to

the minimum point in the well. The steeper the well, the higher the potential energy

and the more likely that the ball will roll back at an exponential speed to the

minimum. In the above example, the shape of the basin of attraction of the fixed

points evolve as the h parameter is varied. When the stable and unstable fixed points

converge, the slope of the line representing the rate of change of the system

asymptotically approaches 0. This can be seen as a flattening of the basin of attraction

in Figure 5.3. Once the critical threshold is passed, the right-hand stable and the

unstable fixed point collapse and we are left with a single basin of attraction

representing a system with a single equilibrium.

FIGURE 5.3: Basin of attraction diagrams for ẋ = h+rx−x3 plotted
for r > 0 and h = 0, |h| = hcrit and |h| > hcrit. A local minimum
indicates a stable fixed point and a local maximum an unstable fixed

point.

In Figure 5.4, we have shown this dynamical behaviour using the bifurcation

diagram. The y-axis represents the state of the system (x), and the values of the

parameter (h) on the x-axis. The solid line represents the location of the stable fixed

points, whereas the broken line represents unstable fixed points. If the system rests at

fixed point A, after a small perturbation it will return to its stable fixed point. At this

point there is only one stable equilibrium in the system. If the parameter increases
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and enters the range of values between the vertical lines at B and C there is the

possibility for multiple equilibria in the system. Now if the system is at point B, a

small stochastic shock or a small increase in the parameter will cause the system to

jump from the upper branch of the diagram to the lower. This large change in the

state of the system is called a catastrophe and is due to the existence of multiple

stable equilibria in the system.

FIGURE 5.4: Bifurcation diagram for fold catastro-
phe model. The graph represents the number and
location of fixed points in the system with a solid line
representing a stable fixed point and broken line rep-
resenting an unstable fixed point. Between the arrow
lines at points B and C there exists the possibility for

multiple equilibria in the system.

It is difficult to predict when a fold catastrophe bifurcation will occur, as the

transition is usually preceded by smooth or gradual change in the state of the system.

A defining feature of such bifurcations is that, after the transition has occurred,

reducing the parameter below point B is not enough to reverse the transition. It must

be reduced past point C in order for the system to return to its original state. This is

called hysteresis and could explain why financial markets appear to linger in the

recessionary state following a financial market crash. These catastrophic bifurcations

are often referred to as critical transitions in the literature, as the crash occurs once

the control parameter passes the critical or tipping point. Henceforth in the chapter

we shall refer to them simply as saddle node bifurcations or critical transitions.
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5.2.1 Critical Slowing Down

The flattening of the basin of attraction as the critical threshold is approached is

known in the literature as CSD. Wissel (1984) found that this phenomenon is a

universal property of systems approaching a critical transition. CSD refers to how

long it takes a system to return to equilibrium following a perturbation. For example,

in our case we can think of the equilibrium price as the price at which the bond

markets clear, i.e. demand equals supply at that price. Hence, we would say that the

bond market is in equilibrium if, following a perturbation, the market returns back to

its equilibrium level of price. However, a crucial question is, after the perturbation,

how long will the system take to return to equilibrium? The return time very much

depends on the shape of the basin of attraction, or the curvature of the basin of

attraction.

CSD has been detected prior to regime shifts in real world dynamical systems which

are believed to have passed through a critical transition (Wissel, 1984; Dakos et al.,

2008; Carpenter et al., 2011; Lenton et al., 2012). CSD has also been detected in data

generated from common ecological and climate models, where the system is made

pass through a critical transition by varying a control parameter (Kleinen, Held, and

Petschel-Held, 2003; Brock and Carpenter, 2006; Guttal and Jayaprakash, 2008; Dakos

et al., 2012b). Recently the framework has been applied to study stock markets and

real estate market crashes. Diks, Hommes, and Wang (2015) find evidence of CSD

prior to the 1987 stock market crash, the dot.com crash and the Asian financial crisis.

However, Guttal et al. (2016) find no evidence of CSD prior to stock market crises in

major stock markets over the past century. Difference in the results may be due to

differences in methodologies used to detrend the data. Guttal et al. (2016) apply the

analysis to detrended logged returns, while Diks, Hommes, and Wang, 2015 analyse

the log of the price series detrended using Gaussian kernel smoothing. Tan and

Cheong (2014), also detect CSD in the U.S. housing market in the lead up to the

sub-prime crisis, with weaker signals detected for the 1997–1998 Asian financial crisis

and the 2000–2001 technology bubble.

Research has emerged which demonstrates that CSD can occur prior to other types of
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transitions, which may not lead to abrupt change or hysteresis (Chisholm and Filotas,

2009; Kuehn, 2011; Kéfi et al., 2013; Boettiger and Hastings, 2012). This may lead to

false positive results if indicators of CSD are used as early warnings of regime shifts.

Moreover, other types of dynamical behaviour that generates rapid regime shifts will

not be preceded by CSD, resulting in the possibility of false negative results.

Boettiger, Ross, and Hastings (2013) provide a classification system for different

types of transitions. There are three broad, overlapping categories: 1) rapid regime

shifts, 2) generated by bifurcations, and 3) preceded by CSD (See Figure 5.5 below).

Saddle node bifurcations alone fall into the sub-category that undergo rapid regime

shifts, are generated by bifurcations and are preceded by CSD. Using this

classification system we use the convention that given a rapid regime shift has

occurred, the presence of slowing prior to the shift is an indication that the system

has underwent a critical transition. This is due to the fact that the other classes of

transitions, prior to which CSD can be detected, do not generate abrupt regime shifts

and hysteresis. Therefore, given an abrupt transition has occurred, and the system

lingers in an alternate state for a prolonged period of time, it is reasonable to explore

the possibility that the regime shift is generated by the system undergoing a critical

transition.

FIGURE 5.5: Classification system for different types of transitions. Adapted from
Boettiger, Ross, and Hastings (2013). There are 3 overlapping categories: Rapid
Regime Shifts, Bifurcations and Critical Slowing Down. The classification system
shows that saddle node bifurcations are caused by bifurcations, resulting in rapid
regime shifts and are preceded by critical slowing down. Examples of types of dy-

namical behaviour are provided for each of the 5 sub-categories.

86



5.3. Empirical Methodology

5.3 Empirical Methodology

The recent ecological literature provides us with methods and tools to detect the

phenomenon of CSD from the statistical properties of a system. We examine the

statistical properties of the 10 year bond yield to maturity data for Greece, Ireland

and Portugal prior to the abrupt rise in bond yields experienced in 2009-2010. In the

critical transition literature, it is well documented that the phenomenon of CSD is

related to the increase in the correlation of the system. This is due to the fact that, as

the critical transition is approached, the rate at which the system recovers from

shocks reduces steadily. This reduction in the recovery rate making successive

observations of the state of the system closer in value to one another.

We follow the methodology of Dakos et al. (2012b), who provide an overview of a

range of the available methods used to identify impending critical transitions. This is

the main methodological guide for pre-processing the data, testing of the data using

rolling windows, sensitivity analysis and significance testing. Dakos and Lahti (2013)

provide a toolbox of code for the R statistical package, called the Early Warnings

Toolbox. According to the authors, non-stationary time series cannot be used to test

for impending critical transitions as this might result in spurious results. Therefore,

we test for unit roots using the Augmented Dickey Fuller test. In all three cases we

found that a unit root was present in the yield series, and we calculate the log-returns

of the series. This removes the unit root and is the equivalent of the continuously

compounded rate of return from one time period to the next.

In order to ensure there are no remaining trends in our log-return time series, we

apply Gaussian kernel smoothing to further filter out any trends that may cause

spurious results. Gaussian kernel smoothing means applying a moving average

smoother, which uses a Gaussian weighting system to average observations

(Shumway and Stoffer, 2006). The average series is calculated as follows,

f̄t =
n∑
i=1

wt(i)xi, (5.1)
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where f̄t is the Gaussian smoother at time t, xi is the value of x at time i, wt(i) is the

weighting given to observation i at time t, and is calculated as follows:

wt(i) = K(
t− i
λ

)/

n∑
i=1

K(
t− i
λ

), (5.2)

where

K(z) =
1√
2π
e−z

2/2 (5.3)

This is the Naradaya-Watson estimator, where K is the kernel function and λ is the

bandwidth which determines the smoothness of the estimator. The smoothed time

series is obtained by subtracting f̄t from xt for all values of t. This should eliminate

any remaining trends in the data. The challenge is to choose a value for the

bandwidth which will remove trends but not filter out the dynamics of interest. As

suggested in Dakos et al. (2012b), in our baseline analysis we use a bandwidth value

of 10% of our data sets. A sensitivity analysis shows the results are robust to choice of

bandwidth.

One of the most common indicators of CSD is autocorrelation (Dakos et al., 2008;

Dakos et al., 2012b). Slowing down indicates that the recovery rate in a system

decreases. This means that state variable over successive time periods will be become

more and more alike as the critical transition is approached. This will be picked up as

an increase in autocorrelation. The recovery rate in the system should go smoothly to

0 as a critical transition is approached (Scheffer et al., 2009); therefore, we would

expect the autocorrelation to approach 1 in a continuous manner. We use the first lag

of the autocorrelation function (ACF1) over a rolling window to probe for increasing

autocorrelation in a time series. This is given by the following formula

ρx =
E[(Xt − X̄)(Xt−1 − X̄)]

σ2
X

, (5.4)

where X̄ is the mean value of X and σ2
X is the variance of X .
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Another possible method to capture the change in the correlation structure prior to

the critical transition is to fit a simple AR model of order 1 (AR1) to the data using a

least squares methodology. The coefficient α is equivalent to ρX (Dakos et al., 2012b).

Xt = αXt−1 + εt, (5.5)

where εt is an IID stochastic shock.

Brock and Carpenter (2006) and Carpenter and Brock (2006) propose rising variance

as a leading indicator of impending critical transitions. Carpenter and Brock (2006)

outline an inverse proportionality between the variance of the state a system and the

rate at which it returns to a steady state following a small shock. This effect is

referred to as squealing in the literature and has been found to be present prior to

critical transitions in ecological and climate systems (Brock and Carpenter, 2006;

Brock and Carpenter, 2010; Dakos et al., 2012b). Skewness measures the asymmetry

of a distribution. As a critical transition is approached, shocks to the state variable of

a system can push it towards the boundary between two alternative states. As a

result, the critical transitions literature predicts that in certain cases skewness should

increase prior to a critical transition (Dakos et al., 2012b). Similarly, as the rate of

recovery decreases, one would expect more observations in the tails of the

distribution, causing kurtosis to increase (Dakos et al., 2012b)3.

Therefore, we follow the results outlined in the literature and examine changes in the

AR1 coefficient, ACF1 (Dakos et al., 2008), standard deviation (SD) (Brock and

Carpenter, 2006), skewness (Guttal and Jayaprakash, 2008) and kurtosis (Biggs,

Carpenter, and Brock, 2009). We can calculate the recovery rate of the system for any

perturbation from the equilibrium point using the AR1 coefficient, which is simply

the reciprocal of the AR1 coefficient. So, we expect the recovery rate to tend to zero as

the system approaches the critical threshold. The existing literature states that these

indicators should increase in a continuous manner as a critical transition is

approached.

3The equations for variance, skewness and kurtosis are provided in Equations 1.6–1.8 of Chapter 1
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It is necessary to quantify the trend in each of the indicators outlined above. We use

Kendall’s Tau correlation coefficient to test the strength of the trend in each of the

indicators. To understand Kendall’s Tau we must consider the pair (t, Yt), where t is

the time period and Yt is the value of a variable at time t. Let’s say the number of time

periods we have is 10 (n = 10). Starting at t = 1, a concordant pair is any pair where t

is greater than 1 and Yt is also greater than Y1. A discordant pair occurs if t > 1 but

Yt < Y1. This procedure is carried out for all values of t up to t = 10 and the numbers

of concordant and discordant pairs are totalled. Kendall’s Tau is calculated as follows

KendallTau =
(No.Concordant)− (No.Discordant)

( 1
2n(n−1))

(5.6)

If we have a continuously increasing indicator, i.e. as we increase t then Yt also

increases for all values of t, then Kendall’s Tau will approach 1. We use surrogate

data testing to determine the significance of the trends calculated on the indicators.

The surrogates are created to have the same ARMA structure as the detrended yield

to maturity data. This is done by selecting the ARMA(p,q) model with the lowest

Akaike Information Criterion. 1000 different surrogate time series are created for

each significance test by adding random shocks to the ARMA model. The indicator

we wish to test for significance is calculated on each of the surrogates and the trend

in the indicator is evaluated using Kendall’s Tau. We then compare the trend

statistics calculated on the original time series with the distribution of those

calculated on the surrogates (Dakos et al., 2012b).

5.4 Data

We obtain 10/11 year sovereign bond yield to maturity daily data from Thomson

Datastream for Greece, Ireland and Portugal (See Table 5.1). The sample bonds all

have at least three years to maturity when the transition occurs. We follow the

literature and choose our critical threshold based on a visual inspection of the data.

We find that the Greek sovereign bond yields begin to rise at the end of October 2009.

This corresponds broadly to announcements by the new Papandreou government

90



5.5. Results

Data and Descriptive Statistics
Greece Ireland Portugal

Date of issue 14/01/2003 28/01/2002 24/10/2003
Maturity date 20/05/2013 18/04/2013 16/06/2014
Sample 01/01/2007-30/10/2009 01/01/2007-31/03/2010 04/01/2007-31/03/2010
no. observations 740 848 848

Descriptive statistics of the bond yield sample (%)
Mean 4.21 3.80 3.82
Median 4.29 3.94 3.98
SD 0.59 0.60 0.61
Skewness -0.79 -0.63 -0.41
Kurtosis 3.33 2.54 2.05
Minimum 2.74 2.30 2.62
Maximum 5.63 4.93 4.97

TABLE 5.1: Data and descriptive statistics

that deficits were on track to more than double the previous government’s forecasts.

For both Ireland and Portugal the bond yields began to rise in Q2 2010. This timeline

corresponds to the agreement for a Greek rescue package, causing uncertainty about

the sustainability of the fiscal position of the peripheral Eurozone countries.

We analyse the trend in the indicators of CSD from the 01/01/2007–20/10/2009 for

Greece and from the 01/01/2007–31/03/2010 for Ireland and Portugal. Choosing a

starting date of 2007, with our baseline 50% rolling window size, means that we will

be able to detect changes in the statistical properties of the data from Q2 2008 for

Greece and from Q3 2008 for Ireland and Portugal, in all cases approximately 6

quarters from the critical threshold.

5.5 Results

Figures 5.6–5.8 display the results of the testing for CSD in the bond yield data. The

first pane displays the detrended log-returns data. In the following panes we have

the rolling window AR1, ACF1, SD, skewness and kurtosis. The results are for the

baseline case of 50% rolling window size and 10% bandwidth for the Gaussian kernel

smoother. The Kendall-tau value is also provided for each indicator. The Kendall-tau

values, alongside their p-values, are summarised in Table 5.2. The p-values are

generated using surrogate significance testing, as described above. Results are

presented for the baseline specification and also based on a 10% bandwidth with 6
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Significance of Indicators of Critical Slowing Down
6 month 1 year 50% Sample 75% Sample

Greece Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value
ACF1 0.626** 0.014 0.825*** 0.004 0.943*** 0.001 0.853** 0.011
AR1 0.625*** 0.006 0.825*** 0.002 0.943*** 0.002 0.853** 0.024
SD 0.68*** 0.006 0.901*** 0.002 0.855*** 0.007 0.977*** 0.001
Skew 0.254 0.189 0.35 0.192 0.237 0.39 -0.177 0.564
Kurt 0.45* 0.074 0.361 0.278 0.249 0.389 -0.828 0.99
Ireland Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value
ACF1 0.439** 0.046 0.682** 0.027 0.844*** 0.008 -0.01 0.56
AR1 0.439* 0.052 0.683** 0.024 0.844*** 0.001 -0.004 0.5
SD 0.465* 0.052 0.504 0.112 0.76** 0.038 0.973*** 0.001
Skew 0.302 0.136 0.6** 0.05 0.54 0.157 -0.091 0.578
Kurt 0.344* 0.094 0.273 0.284 -0.244 0.646 -0.906 0.999
Portugal Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value
ACF1 0.451** 0.038 0.666** 0.034 0.796** 0.026 0.188 0.436
AR1 0.449* 0.056 0.666** 0.026 0.795** 0.032 0.12 0.446
SD 0.629*** 0.006 0.759*** 0.01 0.855*** 0.004 0.978*** 0.002
Skew 0.516*** 0.008 0.772*** 0.01 0.661 0.114 0.218 0.366
Kurt 0.501** 0.028 0.289 0.298 -0.081 0.549 -0.229 0.644

TABLE 5.2: Kendall’s tau coefficients and p-values for trend in indicators of critical tran-
sitions. Results provided for rolling windows of 6 month, 1 year, 50% of sample, 75%
of sample. P-values obtained by calculating Kendall’s tau coefficients from 1000 surro-
gate data sets with same ARMA structure as bond yield data. *=10%, **=5% and ***=1%

significance. Baseline scenario of 50% rolling window size highlighted in bold font.

month rolling window, 1 year rolling window and rolling window equal to 75% of

sample size.

Upon initial examination of Figures 5.6–5.8, it is clear that there is a very strong

positive trend in the ACF1 coefficient, the AR1 coefficient and SD across our three

sample countries. Apart from the clear visual trend, this is evidenced by high,

positive Kendall’s tau coefficients. Referring to the results of the significance testing

for the baseline analysis (50% sample column) in Table 5.2, we can see that for Greece

the trends in AR1, ACF1 and SD are all significant at a 1% level. For Ireland the

trends in AR1 and ACF1 are significant at a 1% level, while the trend in SD is

significant at a 5% level. For Portugal the trends in AR1 and ACF1 are significant at a

5% level, with 1% significance for the trend in SD. Trends for skewness and kurtosis

are insignificant across all sample countries.

92



5.5. Results

FIGURE 5.6: Indicators of critical transitions Greece 01/01/2007-30/10/2009. On the
x-axis is the observation number and on the y-axis is the indicator value
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FIGURE 5.7: Indicators of critical transitions Ireland 01/01/2007-31/03/2010. On the
x-axis is the observation number and on the y-axis is the indicator value.
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FIGURE 5.8: Indicators of critical transitions Portugal 01/01/2007-31/03/2010. On
the x-axis is the observation number and on the y-axis is the indicator value
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5.5.1 Sensitivity to Parameter Choice

Quax, Kandhai, and Sloot (2013) propose an alternate measure of detecting critical

transitions in financial markets, using an information theoretic approach. Their new

measure, information dissipation length, appears to predict the Lehmann Brothers

crash 118 trading days in advance. When investigating autocorrelation and variance

as indicators of CSD, the authors find that these indicators detect impending regime

shifts in interest rate swap data prior to the Lehmann collapse only for certain

maturities, and only for certain values of the rolling window used to calculate the

indicator. These results point to a problem of choice of testing parameter values used

to evaluate early warning signals in financial data. Therefore, we perform a

sensitivity analysis to check the robustness of our results by varying the rolling

window size and kernel smoother bandwidth.

Table 5.2 provides the results of a test for significance of the Kendall’s tau coefficients

calculated on the indicators for a 6 month rolling window, a 1 year rolling window,

and a rolling window length equal to 75% of the sample size. The indicators for

Greece are robust given any of the choices of rolling window size with ACF1, AR1

and SD displaying trends which are significant at the 5% level in all cases. For

Ireland, the significance of these indicators decrease for the 6 month and 1 year

rolling window lengths. However, with the exception of SD for a 1 year rolling

window, all are still significant at the 10% level or higher. The trends become

insignificant when a 75% rolling window is chosen. Given a 1 year rolling window,

the trend in skewness becomes significant at a 5% level. Using a 6 month window,

the trend in kurtosis is significant at a 10% level. Finally, examining the results of the

Portuguese data, it is clear that the indicators are robust for rolling window sizes

shorter than the baseline scenario of 50% of sample size. For the 6 month rolling

window results, both skewness and kurtosis become significant. Similar to the Irish

results, the significant trends disappear for the 75% rolling window size, with the

notable exception of SD which remains significant at the 1% level. Figure 5.9

provides further results for sensitivity testing of ACF1 and SD indicators, carried out

by varying the rolling window size and kernel smoother bandwidth. The results are

similar to those presented above, with some sensitivity to choice of rolling window.
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The indicators are not sensitive to choice of bandwidth.

FIGURE 5.9: Sensitivity analysis carried out by varying rolling band width from 1%
to 20% of sample size in increments of 15 observations and by varying the rolling
window size from 25% to 75% of sample size in increments of 25 observations. The
black triangle indicates the combination of rolling window size and bandwidth that

gives the highest Kendall’s tau coefficient

5.5.2 Comparative Analysis

As a further check on our results, we compare our findings with Kendall’s tau

statistics for ACF1 coefficients estimated in rolling windows for a number of

Eurozone and international 10–11 year sovereign bonds. We use the ACF1 indicator

because it has been found to be the most robust early warning signal (Dakos et al.,

2012a). The chosen bond yield to maturity data are plotted in Figure 5.10. Up until

late 2008 the Eurozone bond yields closely follow the same path. The yields diverge
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after the onset of the global financial crisis in 2007–2008, with investors charging

higher risk premia for Ireland and Greece in particular, but then follow a similar

downwards trend up until the 31/03/2010. The notable exception is the Greek yield

to maturity which begins to increase in late 2009. The black vertical line in Figure 5.10

marks the end of the period of analysis (30/10/2009) of the Greek bond yield data.

FIGURE 5.10: Sovereign 10-11yr bond yield data for Austria, Belgium, Canada,
Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, UK and US form

01/01/2004-31/10/2010.

Table 5.3 displays the results of significance tests completed for 6 Eurozone and 3

international bond yield time series. Using the same methodology and sample size

described for Greece, Ireland and Portugal, we find that all the Eurozone countries

have significant Kendall’s tau coefficient when calculated using a 50% rolling

window size. The coefficients of Germany and Italy are significant at a 1% level,

Spain and Belgium at 5% and Austria and Netherlands at 10%. With the exception of

Germany, which displays significant trends across all choices of window size, these

results are not robust to changes in rolling window size. The Spanish results are also

significant at a 10% level using a 1 year rolling window. All other results become

insignificant when the window size is varied. These results are interesting, as none of

these countries entered a bailout programme or experienced the large abrupt increase

in yields that occurred in the Greek, Irish or Portuguese markets. Therefore, we
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Significance of Trend in Autocorrelation Over Varying Rolling Window Sizes
Austria Germany Spain

Window size Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value
6 month 0.133 0.306 0.484** 0.038 0.239 0.198
1 yr 0.446 0.0178 0.788*** 0.002 0.588* 0.078
50% sample 0.716* 0.062 0.858** 0.008 0.794** 0.024
75% Sample -0.488 0.7774 0.792** 0.032 -0.007 0.5

Belgium Italy UK
Window size Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value
6 month 0.145 0.31 0.224 0.248 -0.045 0.578
1 yr 0.452 0.16 0.503 0.114 0.0400 0.472
50% sample 0.737** 0.04 0.811*** 0.001 -0.180 0.614
75% Sample -0.488 0.772 -0.040 0.496 -0.523 0.772

Canada Netherlands US
Window size Kendall’s Tau p-value Kendall’s Tau p-value Kendall’s Tau p-value
6 month 0.362* 0.094 0.219 0.232 -0.133 0.694
1 yr 0.572* 0.072 0.409 0.148 -0.043 0.5554
50% sample 0.409 0.23 0.666* 0.0727 0.186 0.428
75% Sample -0.430 0.766 0.131 0.428 -0.035 0.514

TABLE 5.3: Significance tests on sovereign 10-11yr bond yield data for Austria, Belgium,
Canada, Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, UK and US. All
bonds were issued in 2002-2003 and matured in 2013. Significance test carried out using

surrogate data tests.

would not expect the presence of early warning signals in these markets. The UK and

the US results show no significant trends in autocorrelation from 2007–2010 for any

rolling window size. Canada is significant at a 10% level using 6 month and 1 year

rolling window but this significance disappears for larger window sizes.

In order to gain a better understanding of the significant trends found in the above

analysis, we plot the ACF1 coefficient for the 3 bailout countries and the 9 countries

in our comparative sample (Figure 5.11). A 400 day rolling window is used to

calculate the ACF1 from 02/01/2004–31/03/2010. This window choice is

approximately equal to the 50% window used in the statistical testing above and,

therefore, will help us understand the significant trends found across the Eurozone

countries. The significance of the ACF1 coefficients is estimated at a 5% level using

Bartlett (1946) standard errors. Periods during which ACF1 is significant are shaded

grey. The ACF1 coefficients of Greece, Ireland and Portugal trend upwards from 2008

and breach the 5% significant level in early 2009. The coefficients continue to trend

upwards until the end of the sample period (31/03/2010).

Out of the 9 countries in the comparative sample, only Spain and Germany display

significant ACF1 coefficients at the end of the sample period. These significant ACF1
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coefficients are coupled with significant Kendall’s tau coefficients, as seen in 5.3. One

potential explanation is that spillover effects from the Greek, Irish and Portuguese

markets were beginning to be felt in the Spanish and German markets, with well

documented fragilities in the Spanish market pushing it closer to a critical transition

and flight to quality effects being detected in the German market. We find that the

significant Kendall’s tau coefficients obtained for Austria, Belgium, Canada, Italy and

the Netherlands in Table 5.3 cannot be seen as positive early warning signals due to

insignificant ACF1 coefficients. However, the results presented above provide us

with extra confidence in the robustness of our results with respect to the detection of

CSD for Greece, Ireland and Portugal.

FIGURE 5.11: Rolling window ACF1 coefficient using 400 day window from
01/01/2004-31/03/2010 for Austria, Belgium, Canada, Germany, Greece, Ireland,
Italy, Netherlands, Portugal, Spain, UK and US. Grey regions indicate periods where
ACF1 coefficient is significantly different from 0 with 5% confidence intervals using

Bartlett (1946) standard errors.
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Positive Early Warning Signals

Start date Stop date
Succeeded by

transition
False

Positive
Dax 30 19/05/1993 10/02/1994 N Y

23/12/1999 07/03/2000 Y N
02/01/2012 27/04/2012 N Y

Dow Jones 21/01/1995 08/03/1996 N Y
Eurostoxx 50 03/05/1994 21/02/1995 N Y

11/05/1999 26/10/1999 N Y
24/01/2012 17/04/2012 N Y

FTSE 100 05/05/1998 03/12/1998 Y Y
NIKKEI 225 N/A N/A
Toronto SE 23/10/1997 27/10/1997 N Y

11/05/1999 26/10/1999 N Y
24/01/2012 17/04/2012 N Y

TABLE 5.4: Incidence and duration of positive early warning signals in daily stock price
returns of Dax 30, Dow Jones, Eurostoxx 50, FTSE 100, NIKKEI 225 and Toronto SE.

5.5.3 False Positive Early Warning Signals

We further investigate rising autocorrelation as a leading indicator of critical

transitions in financial markets, examining 6 international stock market indices over

the period 01/01/1990 to 12/02/2014. A 400 day rolling window is used to calculate

ACF1 on detrended stock index log-returns, returning a positive early warning signal

when both the Kendall’s tau statistic and ACF1 coefficient are significant at a 5%

level. The results are plotted in Figures 5.12–5.17. The shaded section in the plot

indicates that, during this time period, both the Kendall’s tau statistic and ACF1

coefficient are significant at a 5% level. Thus, they meet our criteria for the occurrence

of a positive early warning signal.

There are 10 occasions where positive signals are recorded across the 6 stock markets.

When a number of thin shaded regions are clustered closely together this is due to a

significant Kendall’s tau coupled with an ACF1 that is flickering between significant

and insignificant. We count this as a single (weak) positive signal. Table 5.4

summarises the occurrence of the positive signals over the sample period.

There are 2 occasions where a significant early warning is followed by a financial

crisis. The first is for the DAX 30 stock exchange (Figure 5.12) in the period leading

up to the bursting of the tech bubble. This crisis resulted in a bull market in the DAX

which caused it to lose over 50% of its value between 2001 and 2003. During this
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period the ACF1 coefficient becomes significant from the 23/12/1999 until the

07/03/2000, leading to a positive early warning signal for over 3 months before the

crash. This financial crisis would meet the criteria for a critical transition due to the

large abrupt drop in stock prices and the market remaining in a bull phase for a

prolonged period of time.

The second early warning signal which precedes a crash is for the FTSE (Figure 5.14)

in 1998. The trend in ACF1 became significant on the 05/05/1998 and remained

significant as the FTSE lost 20% of its value from August to October 1998 during the

Russian crisis. However, by November 1998 the FTSE had returned to its previous

peak. This stock market crash does not appear to meet the criteria set out by

Boettiger, Ross, and Hastings (2013) for a catastrophic bifurcation. While there is a

large abrupt change in the stock index, and evidence of CSD, there is no evidence of

hysteresis. None of the other positive signals are followed by regime shifts that meet

the criteria for a critical transition. This leads us to conclude that using rising

autocorrelation as a leading indicator of impending critical transitions for stock

indices provides false positive signals.

The results of this section are broadly similar to those outlined in Guttal et al. (2016),

who find either no trends or weak trends in the ACF1 prior to stock market crashes

over the past century. The authors however, found evidence of strong trends in both

variance and power spectrum prior to a number of stock market crashes. The authors

suggest that stock market crashes may be better explained as a stochastic transitions.

In such a transition, a regime shift occurs in a bi-stable system while the system is

still far from a critical point, driven by increasing trends in stochastic perturbations.

The results presented in this chapter imply that different modelling approaches are

required to capture the dynamics of regime shifts in bond and stock markets.
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FIGURE 5.12: Dax 30 index positive trends in autocorrelation calculated on
log-returns of international stock indices. Shaded area indicates period over
which both ACF1 and Kendall’s are significant at a 5% level. ACF1 calculated
using a 400 day window and trend evaluated using Kendall’s tau over 400

days from 01/01/1990-12/02/2014.

FIGURE 5.13: Dow Jones index positive trends in autocorrelation calculated on log-
returns of international stock indices. Shaded area indicates period over which both
ACF1 and Kendall’s are significant at a 5% level. ACF1 calculated using a 400 day
window and trend evaluated using Kendall’s tau over 400 days from 01/01/1990-

12/02/2014.
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FIGURE 5.14: FTSE 100 index positive trends in autocorrelation calculated on log-
returns of international stock indices. Shaded area indicates period over which both
ACF1 and Kendall’s are significant at a 5% level. ACF1 calculated using a 400 day
window and trend evaluated using Kendall’s tau over 400 days from 01/01/1990-

12/02/2014.

FIGURE 5.15: Eurostoxx 50 positive trends in autocorrelation calculated on log-
returns of international stock indices. Shaded area indicates period over which both
ACF1 and Kendall’s are significant at a 5% level. ACF1 calculated using a 400 day
window and trend evaluated using Kendall’s tau over 400 days from 01/01/1990-

12/02/2014
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FIGURE 5.16: NIKKEI 225 index positive trends in autocorrelation calculated on log-
returns of international stock indices. Shaded area indicates period over which both
ACF1 and Kendall’s are significant at a 5% level. ACF1 calculated using a 400 day
window and trend evaluated using Kendall’s tau over 400 days from 01/01/1990-

12/02/2014.

FIGURE 5.17: Toronto Stock Exchange index positive trends in autocorrelation cal-
culated on log-returns of international stock indices. Shaded area indicates period
over which both ACF1 and Kendall’s are significant at a 5% level. ACF1 calculated
using a 400 day window and trend evaluated using Kendall’s tau over 400 days from

01/01/1990-12/02/2014.
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5.6 Conclusion

CSD has been used in recent ecological, climatology and financial literature as a

potential early warning signal for impending regime shifts. The assumption is that

abrupt change is generated endogenously by some underlying parameter reaching a

critical threshold, causing the system to switch to an alternate equilibrium. Our

results provide evidence that the sovereign debt markets of Greece, Ireland and

Portugal experienced critical transitions during the Eurozone sovereign debt crisis.

Statistically significant positive trends occur in indicators of CSD calculated from

detrended bond yield returns. These trends begin up to 18 months prior to the abrupt

increase in bond yields experienced by Greece in Q4 2009, and by Ireland and

Portugal in Q2 2010. For instance, the Kendall tau coefficient for ACF1, AR1 and SD

indicate strong positive trends that are robust to changes in rolling window size and

Gaussian kernel smoother bandwidth. Further examination of the results reveal that

in all cases ACF1 begins rising in 2008, becomes statistically significant in early 2009

and continues to rise up until the end of testing period. This indicates a positive early

warning signal in the three markets. In all cases the positive signal was followed by

abrupt change in the state of the market, with the market remaining in the high yield

state for a long period of time.

We examine trends in ACF1 for 9 sovereign bond markets which did not experience

abrupt regime shifts during the Eurozone sovereign debt crisis. The results reveal

positive Kendall’s tau statistics for 6 Eurozone countries and Canada. Out of these,

only in the cases of Germany and Spain does the ACF1 coefficient become significant

at a 5% level, indicating positive early warning signal of very short duration. This

appears to be a false positive signal as neither market underwent a regime shift.

However, the result may be due to spillover effects from the sovereign debt crisis.

Further analysis of the use of ACF1 as a leading indicator of critical transitions in

stock markets reveals a propensity for false positive signals, with significant ACF1

coefficients trending upwards for prolonged periods where no regime shift occurs. In

fact, only in two cases is a positive signal followed by a market crash, and only in the

case of the Dax 30 in March 2000 does the crash meet the criteria for a saddle node

bifurcation as outlined in Boettiger, Ross, and Hastings (2013).
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Our results have a number of implications: firstly, we have shown that CSD may

provide a useful indicator of impending regime shifts in sovereign bond markets,

and should be further investigated as a tool for regulators and financial market

participants in the detection and monitoring of sovereign bond market crises.

Secondly, we find a very poor detection rate and prevalence for false positive results

when estimating CSD as an early warning signal in stock indices. Chapter 6 of this

thesis proposes a number of alternate, network theoretic, early warning signals for

stock markets. However, in order to better understand the dynamics of regime shifts

in stock markets, further research is required into the potential modelling of stock

market crashes using the framework of stochastic transitions in bi-stable systems as

proposed in Guttal et al. (2016). Our results suggest that the theory of bifurcations,

and in particular catastrophe theory, may be used in the development of theoretical

multiple equilibria models of sovereign debt crises. We propose future research into

the development of such models. In particular, we suggest that future research in this

area draw upon models and results from the ecological and other sciences, which

have successfully simulated the dynamics of regime shifts in complex systems. Using

this approach, one could model the behaviour of sovereign debt markets

approaching a critical transition, capturing phenomena such as CSD.

Finally, we note that in both Chapter 4 and Chapter 5, our results are either weak or

insignificant for stock market indices. One potential factor is that fluctuations in

stock index returns are generally calculated as a weighted average of fluctuations in

the underlying component stocks. This additional level of aggregation may destroy

interesting dynamics in the underlying component time series. Therefore, in Chapter

6 we examine system dynamics at the level of component stocks of global indices,

and examine co-movements of log-returns using minimum spanning tree analysis of

correlation networks.
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Chapter 6

Network Topology and Systemic

Risk

6.1 Introduction

The question of how a crisis in a small sub-section of the U.S. financial system, the

subprime mortgage market, set off a chain of events that led to a global financial

crisis is still fresh in the minds of policymakers, financial regulators and academics.

Ex post analyses of the crisis postulates that trends of global deregulation of markets

and institutions, the growth of the shadow banking industry, and the ongoing

phenomenon of financial innovation led to increasing fragility of the financial system

as a whole (Bisias et al., 2012). This has prompted the realisation that the subprime

crisis was not the driving force, but rather the trigger for the global financial crisis

(Karmin and Pounder DeMarco, 2010). Substantial effort has since been expended on

finding measures to detect and monitor the build-up of instabilities in the financial

system, which can lead to a shock or stress event in financial markets becoming

systemic1. Figure 6.1 demonstrates the scale of disruption to global stock markets

during the global financial crisis.

In Chapter 2 of this thesis we discussed that, in order to provide robust early warning

signals of financial crises, we must move beyond traditional risk models which

assume that financial data can be modelled as stochastic processes, depending solely

on past observations of itself and other market data. These models fail to take into

1For a review of systemic risk research and measures see Bisias et al. (2012).
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FIGURE 6.1: Price Index (01/01/2003=100) for four major stock market indices - The
S&P 500, FTSE 100, NIKKEI 225 and SBF 120

account the complexity of economic and financial systems, where the interaction of

many market participants can lead to behaviour which can very different from the

norm, and exceedingly difficult to predict. One method for the detection of

instabilities in complex systems, which can capture changes in the interactions of

market participants, is analysis of changes in network topology. Schweitzer et al.

(2009), for example, argue that changes in network topology can push a system closer

to a critical point. As discussed in Chapter 5 of this thesis, when a system reaches a

critical point even a small shock can cause large, discontinuous change in the state of

the system. However, our investigation of nonlinear dependence and CSD in stock

market indices returned largely insignificant results. Therefore, in this chapter we

apply our analysis to the individual component stocks of major global stock indices,

investigating changing correlation network topology as an early warning signal for

financial crises.

A body of recent literature has examined the correlation network of financial markets

for evidence of changes in network topology in the lead-up to the global financial

crisis, finding evidence of changing network topology, phase transitions, and the

increasing influence of the financial sector in financial networks in the lead-up to the

global financial crisis. In this chapter, we draw upon a number of previous results in

the literature to assess potential early warning signals of systemic risk. For example,
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Onnela et al. (2003a) use minimum spanning trees (MST) estimated for U.S. stock

markets and find a topological shrinking of the MST during financial crises. Kaya

(2015) and Wiliński et al. (2013) propose decreasing spread of the MST as a leading

indicator of systemic risk, using evidence from global asset indices and stock market

returns from the Frankfurt Stock Exchange respectively. Kennett et al. (2010) and

Musmeci, Aste, and Di Matteo (2015) present results for the U.S. stock market related

to the influence of the financial sector in the lead-up to the crisis, as well as results

related to sectoral dynamics in general.

The primary objectives of this chapter, and our contributions to existing literature, are

as follows: firstly, we perform a static MST analysis to determine whether a

detectable phase transition occurred in the correlation network structure of the S&P

500 during the global financial crisis. We follow the methodology of Wiliński et al.

(2013), who fit a power law distribution to the degree distribution of MSTs extracted

from the Frankfurt Stock Exchange, finding the emergence of a super-connected hub

in the lead-up to the crisis2. We also assess the measures of MST centrality, spread

and sectoral clustering, estimated in overlapping, rolling windows from the

component stocks of the S&P 500, FTSE 100, NIKKEI 225 and SBF 120. The purpose

of the analysis is to determine whether existing results, such as those found in

Onnela et al. (2003a), Wiliński et al. (2013), Kaya (2015) and Musmeci, Aste, and

Di Matteo (2015), related to changing correlation network topology can be used to

obtain reliable indicators of systemic risk in stock markets.

The results of the static analysis on the S&P 500 reveals a clear MST power law degree

distribution in the pre-crisis period. Following the onset of the crisis, a power law

scaling region is detectable; however, the extrema of the degree distribution are not

power law distributed. Finally, in the post-crisis period we find a power law scaling

region with one highly connected node. The results show that there is significant

variation in network topology over the period. This is confirmed by dynamic analysis

of the mean occupation layer, a measure of the spread of the network, which shows

significant variability but no clear phase transition prior to the crisis. We find that the

most suitable measure of systemic risk for all four markets is the normalised tree

2Wiliński et al. (2013) also refer to the topology of the network containing the super-connected hub as
a superstar structure.
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length, which measures the overall interconnectedness of the network. Our results

indicate that the normalised tree length provides the most reliable leading indicator

for systemic risk, with a strong decrease across all four markets in the lead-up to the

crisis. This decrease signals a shrinking of the MST and an increased likelihood for a

shock to propagate through the system. For the FTSE 100, NIKKEI 225 and SBF 120,

the decreasing trend begins in early to mid-2006, providing a clear early warning

signal long before the onset of the crisis. Other measures, such as the average degree

of the financial sector and the modularity of Industry Classification Benchmark (ICB)

industry groupings within the MST, appear to provide early warning signals for the

S&P 500 and the FTSE 100; however, further research is required into these measures

to determine whether they are suitable leading indicators of systemic risk.

The remainder of the chapter is structured as follows: Section 6.2 introduces the

concept of systemic risk and provides an overview of relevant literature. Section 6.3

presents the data and details the MST methodology. Section 6.4 presents the main

results of the analysis, and Section 6.5 provides some concluding remarks.

6.2 Literature Review

6.2.1 Systemic Risk

Systemic Risk has been defined by three major policy institutions, the IMF, BIS, and

FSB (2009), as the risk of

“the disruption to the flow of financial services that is (i) caused by an

impairment of all parts of the financial system and (ii) has the potential to

have serious negative consequences for the real economy.”

This definition says little about the mechanisms by which instabilities build-up in the

financial system over time, leaving it susceptible to a systemic event. However, there

is general consensus amongst policy makers and researchers that systemic risk has

both a cross-sectional and a time dimension.3

3See for example Caruana (2010).

112



6.2. Literature Review

In the cross-sectional dimension risks are related to both common exposures, and to

the complex network of transactions and balance sheet exposures between financial

institutions. In the time dimension there is a pro-cyclicality to systemic risk (Caruana,

2010). During prolonged boom periods financial institutions lend more freely and

increase leverage, investors become less risk averse, and often increased financial

innovation and deregulation occurs (Bisias et al., 2012). Fragilities build-up within

the system and a relatively minor stress event can turn into a systemic crisis, caused

by positive feedback loops. These positive feedback loops are partially related to

large numbers of market participants following similar trading or risk management

strategies, with resultant large swings in asset prices and lack of liquidity

(Danıelsson, 2002). Zigrand (2014) provides a useful explanation of systemic risk as

capturing the exogenous risks that may prevent the system from functioning

properly, as well as the endogenous risk that is generated by the system itself. He

states that endogenous risk is related to positive feedback loops and cascades.

The build-up of systemic risk through endogenous mechanisms related to positive

feedback loops is not a new concept in finance. Minsky’s financial instability

hypothesis, (Minsky, 1977), views financial instability as a fundamental part of a

functioning financial system. He proposes that when the financial system is robust,

and the economy is a state of growth, optimism can lead to positive feedback loops

between credit and asset prices. Capital gains and financial success from rising asset

prices incentivises riskier lending thereby increasing the financial fragility of the

system. A Minsky moment occurs when cash flows from assets become unable to meet

debt repayments, forcing some investors to sell off assets to cover these repayments.

Asset prices begin to fall and confidence dries up in the markets, causing a liquidity

crisis as lenders are no longer willing to refinance debt. This leads to a vicious

downwards asset price spiral and credit crunch with implications for the real

economy.

6.2.2 The Correlation Network Approach

In this chapter we analyse a number of potential systemic risk indicators estimated

on equity market correlation networks. Measures based on equity market returns are
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suitable for detecting systemic risk as they are forward looking. Moreover, equity

return correlations are used as an input for default correlation models, as stocks can

be seen as a call option on the assets of a firm (Merton, 1973). Therefore, correlation

of equity returns reflects the correlation between the value of firms’ assets (Patro, Qi,

and Sun, 2013). By definition, systemic risk measures should detect potential

spillovers to the real economy. Therefore, equity market based measures are a logical

choice due to strong links to the real economy through wealth effects (Modigliani,

1971) and financial accelerator effects (Bernanke, Gertler, and Gilchrist, 1994).

Previous studies have used correlation between equity returns as a measure of

systemic risk. De Nicolo and Kwast (2002) examine equity returns’ correlations

between large and complex banking organisations from 1988 to 1999, finding a trend

of increasing correlation over the period. They relate this to an increase in systemic

risk potential, as increased correlation means exogenous shocks can better propagate

through the system. Patro, Qi, and Sun (2013) use a similar methodology by

examining the correlations between the equity returns of bank holding companies

and investment banks from 1988 to 2008. Their study reveals that mean correlations

increased significantly since 1996, indicating higher systemic risk potential. They also

note a large spike in mean correlations occurred in the second half of 2007. While

analysis of mean correlation coefficients can provide useful information regarding

the interconnectedness of financial markets and systemic risk potential, MST analysis

allows us to delve deeper into the network structure of markets and detect dynamical

behaviour at a firm and sectoral level which may not be apparent at an aggregate,

market level.

MSTs were first applied in the analysis of financial markets by Mantegna (1999).

Mantegna showed that a static analysis of the stock market using MST could identify

hierarchal structures in the market, with economically meaningful clustering of

stocks. In more recent times, dynamic MST analysis has been used to investigate the

changing nature of financial asset interdependencies over time (Onnela et al., 2003b;

Coelho et al., 2007). MST analysis is particularly suited to the analysis of systemic

risk as it filters the correlation matrix of asset returns, extracting the most important

information, and identifies the shortest and most probable path for the transmission

114



6.2. Literature Review

of price shocks throughout the system (Lautier and Raynaud, 2013). Moreover, Pozzi,

Di Matteo, and Aste (2013) contend that MSTs are effective at distinguishing the

highly connected, important and influential vertices at the centre of a network.

A number of recent papers use MST analysis to examine changes in network

topology during the global financial crisis. Kaya (2015), for example, use a mutual

information based MST to assess the synchronisation of different asset classes. They

examine the average eccentricity of minimum spanning trees estimated from

networks of stock, bond and commodity asset classes, and networks based on

regional/sectoral equity indices. Eccentricity is a measure of the centrality and

spread of the nodes in the network, and the authors find that asset sell-offs are more

prevalent following a decrease in network eccentricity. Clear indications of

decreasing eccentricity are present prior to the crisis period.

Wiliński et al. (2013) find evidence of two separate phase transitions in the Frankfurt

Stock Exchange during the global financial crisis. The first phase transition is

observed as the crisis unfolds, with the network degree distribution switching from a

scale free distribution to a superstar structure, where one dominant hub appears at

the centre of the network. The second transition occurs after the crisis period. In this

period, the network is characterised by a scale free degree distribution, with a

number of smaller star-like hubs. The authors state that the emergence of the

superstar structure is a precursor to the 2008 crash. They claim that the mean

occupation layer, a measure of network centrality and spread which is similar in

nature to network eccentricity, is more sensitive than the normalised tree length in

the detection of topological phase transitions.

The MST is not the only or even the most efficient method for filtering a correlation

network (Kaya, 2015). Kennett et al. (2010) analyse correlations between stock prices

in the NYSE over the period 2001 to 2003 using Partial Correlation Threshold

Networks (PCTNs) and Partial Correlation Planar maximally filtered Planar Graphs

(PCPGs). Partial correlation networks correct for indirect effects when calculating the

correlation between two stocks, and can simplify the description of the system. Both

static and dynamic analysis of the partial correlation networks reveal a dominant

financial sector in terms of centrality in the network, particularly the investment
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services sub-sector. The authors find that the significant influence of the financial

sector is consistent over the entire sample period.

Musmeci, Aste, and Di Matteo (2015) analyse the correlation structure of the S&P 500

using Planar Maximally Filtered Graphs (PMFG) and their associated clustering

structure, the Directed Bubble Hierarchical Tree (DBHT). The PMFG algorithm is less

restrictive than the MST methodology, filtering out less information. The MST

algorithm starts with a random node and adds the most highly connected nodes such

that no loops can occur. The PMFG algorithm adds nodes in a similar manner but

must only ensure the planarity of the resulting network. Thus, the MST network is a

subgraph of the PMFG network. The authors find that the similarity between DBHT

clusters and the Industry Classification Benchmark (ICB), while initially high, drops

off from the crisis onwards. The authors conclude that ICB may be becoming a less

informative benchmark to diversify risk, and that persistence in the DBHT clusters

could be a potential indicator of systemic risk. The authors also find that that the

cluster containing financial sector stocks becomes larger and contains a larger

number of industries from 2007. The authors relate the increase in size of the

financial sector cluster to the role of the financial sector in the propagating the

subprime crisis to other sectors of the economy.

Pozzi et al. (2008) assess the stability of edges in PMFG and MST methodologies, and

their ability to reproduce the correlation dynamics of the top 300 stocks of the NYSE

over the period 2001–2003. The authors find that the PMFG performs slightly better

in terms of persistence of edges, and incorporates a larger number of economically

meaningful connections. However, there is a cost in terms of visualisation, as the

PMFG network has triple the number of edges as that of the MST. The authors also

find that both algorithms perform well in terms of identifying sectoral clusters.

6.3 Data

We analyse the correlation network topology of the components of four major stock

market indices over the period 2003–2010 inclusive. Our sample includes the

components of the S&P 500, FTSE 100, NIKKEI 225 and the SBF 120. The sample
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period allows us to detect evidence of fragility building up in the financial system in

the period before the subprime mortgage crisis, as well as to analyse developments in

the pre-crisis, crisis and post-crisis periods. We obtain a list of tickers, market

capitalisation, and ICB industry and sub-sector information for the each of the stock

indices from Thomson Reuters Datastream as of 31/12/2010. Stocks which don’t

have data for the entire period are excluded. Data is not available for stocks which

have delisted between the end of the sample and the date the data was downloaded.

Hence, there is a survivorship bias in the sample which is an unavoidable caveat of

the research.

Data is available for the full sample period for 399 of the S&P 500 stocks, 88 of the

FTSE 100 stocks, 205 of the NIKKEI 225 stocks and 97 of the SBF 120 stocks. Table 6.1

provides a breakdown of the data by ICB industry classification. The largest two

industries by number of stocks in the FTSE 100 as at 31/12/2010 are financials and

consumer services, with 23.8% and 17% respectively. Industrials and consumer

goods comprise the largest portion of the NIKKEI 225, with 31.2% and 20% of stocks

in the sample respectively. The largest two industries in the SBF 120 sample are

industrials and consumer services with 18.5% and 16.4% of stocks respectively.

Finally, the largest two industries in the S&P 500 are financials and industrials with

17.7% and 16.2% respectively.
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TABLE 6.1: Breakdown of FTSE 100, NIKKEI 225, SBF 120 and S&P 500 samples by % of stocks and % of Market Capitalisation in ICB industry group

FTSE 100 NIKKEI 225 SBF 120 S&P 500
Industry % Market Cap % Stocks % Market Cap % Stocks % Market Cap % Stocks % Market Cap % Stocks
Basic Materials 7.8 9.0 6.4 12.6 4.8 6.1 3.3 5.0
Consumer Goods 21.5 10.2 26.0 20.0 25.6 14.4 10.1 11.7
Consumer Services 8.5 17.0 9.4 11.2 8.6 16.4 12.3 14.5
Financials 22.6 23.8 13.8 8.7 18.0 15.4 16.1 17.7
Health Care 10.6 4.5 6.0 4.8 8.9 6.1 10.3 8.7
Industrials 4.9 14.7 19.6 31.2 17.2 18.5 12.7 16.2
Oil & Gas 11.6 6.8 0.1 0.4 7.9 5.1 12.4 7.7
Technology 2.2 4.5 5.4 6.3 5.2 12.3 16.3 10.5
Telecommunications 4.6 2.2 11.5 1.9 2.3 1.0 2.8 1.0
Utilities 5.2 6.8 1.5 2.4 0.9 4.1 3.2 6.5
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6.4 Methodology

6.4.1 Minimum Spanning Trees

In this chapter we assess the MST methodology as a candidate for detecting and

monitoring systemic risk in financial markets. As discussed in Section 5.3, other

methods such as PFMG are marginally more effective at detecting economically

meaningful connections. However, we choose the MST methodology due to its

computational efficiency and robustness for large numbers of assets (Kaya, 2015). In

order to extract the MST from the fully connected correlation matrix we must

calculate a measure of distance between two stocks based on the correlation

coefficient. As discussed above, we first calculate the logarithmic return of the equity

prices in our sample.

A number of papers propose that financial returns be detrended prior to filtering of

the correlation network. Wiliński et al. (2013), for example, state that if correlation

with the overall market is not removed, this can lead to spurious correlations

between stocks related to bubble dynamics. Borghesi, Marsili, and Miccichè (2007)

find that subtraction of a global component, for example the average market return,

from stock return series improves the ability of MSTs to detect industry clustering,

particularly for intraday returns. However, although there is an improvement in

detection of industry clustering across all sample sizes, the authors find that for

samples where the number of stocks is less than 500, the degree distribution of the

MST is not statistically different from that calculated from random walks. The results

of the study show that the effect of noise is significantly reduced for the

non-detrended stock returns. Moreover, the MST for non-detrended returns with a

daily frequency performs quite well both in terms of detecting economically

meaningful clusters and in terms of the persistence of intra-industry connections

over time.

We choose not to remove the market (global) factor from our log-returns sample for

two primary reasons: firstly, the analysis is being performed on four samples of size

88 (FTSE 100), 205 (NIKKEI 225), 97 (SBF 120) and 399 (S&P 500). Therefore, as shown

in Borghesi, Marsili, and Miccichè (2007), for the smaller sample sizes the effect of
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noise may over power the topological dynamics if the global component is removed.

Secondly, as the focus of this chapter is on systemic risk analysis, the removal of

dynamics related to overall market movements may destroy interesting trends in the

network metrics related to bubble dynamics. Furthermore, Borghesi, Marsili, and

Miccichè (2007) show only a marginal improvement in persistence and clustering by

removal of the global factor when daily data is used, as in this chapter.

Next the Pearson’s correlation coefficient is calculated between the logarithmic

returns of stock Xi and stock Xj as

ρij =
〈rirj〉 − 〈ri〉〈rj〉√

(〈r2
i 〉 − 〈ri〉2)− (〈r2

j 〉 − 〈rj〉2)
, (6.1)

where 〈...〉 denotes the expectation or time operator and ri is the log returns series for

stock i.

Given some distance dij between stocks i = 1, ..., N and j = 1, ..., N the minimum

spanning tree is a network of nodes which are all connected by at least one edge. The

edge weights are given by the distance between the vertices, and the sum of the edges

is the minimum possible to connect all the vertices without any loops (Sandoval,

2012). Mantegna and Stanley (1999) outline a distance metric between two stocks

dij =
√

2(1− ρij) (6.2)

The distance measure proposed by Mantegna and Stanley (2000) treats negative

correlations as large distances between stocks. However, negative correlations play a

large role in the dispersion of price shocks throughout the system. Therefore, recent

applications of MST analysis to correlation networks of stock returns use 1− abs(ρij)

as a distance metric. This metric treats positive and negative correlations as equally

important. However, as the returns of the individual stock pairs in our sample are

predominantly positively correlated, the aggregate trends detected from both

distance metrics are virtually identical. We apply the 1− abs(ρij) distance measure in

this chapter.
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FIGURE 6.2: Relationship of correlation coefficient to the distance measure
over the range -1 to 1

The Prim (1957) algorithm is applied to extract the MST from the network of (N−1)N
2

distance measures. Prim’s algorithm provides an iterative, computationally efficient

method for building a MST. This method is chosen over the Kruskal (1956) algorithm

as it is more computationally efficient for fully connected graphs (Onnela, 2002). G

denotes the fully connected graph with N vertices and edge weight between vertex i

and vertex j, dij . S denotes the minimum spanning tree, which is a sub-graph of G.

We begin building the tree by selecting an arbitrary vertex, V1, which can be called

the root of the MST. We add V1 to S and then follow a 2 step iterative process.

1. Find the edge with the shortest distance between two vertices such that one

vertex is in S and the other is in G. Add this edge and vertex to S.

2. If all vertices are contained in S then S is the minimum spanning tree of G. If

not, repeat step 1.

The results of the algorithm applied to a network containing loops is displayed in

Figure 6.3.
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(A) Network before MST pruning (B) Minimum Spanning Tree

FIGURE 6.3: Extraction of the minimum spanning tree

6.4.2 Network Metrics

Onnela et al. (2003b) found that, due to increased correlation during financial crises,

minimum spanning trees shrink topologically. As the tree shrinks the shortest path

by which a shock can propagate through the system decreases. This shrinking

increases the risk of a systemic event. Therefore, we analyse the evolution of the

minimum spanning tree by calculating the normalised tree. For a MST with N

vertices and N − 1 edges the normalised tree length L is defined by Onnela et al.

(2003b) as

L =
1

N − 1

∑
dij∈S

dij (6.3)

A decrease in L over time indicates that the MST is shrinking and, on average, the

equity returns are becoming more interconnected. An increase in correlation leads to

a decrease in the distance dij between stock i and stock j. The normalised tree length

sums the distances (or edge weights) in the MST for all i and j, normalising by the

total number of edges in the tree. Another statistic outlined in Onnela et al. (2003b),

which quantifies the spread of the network, is the mean occupation layer. This

statistic calculates the average number of steps between the nodes in the network

and the central node. Using a similar method, asset eccentricity, Kaya (2015) found

evidence of a decrease in the spread of MSTs calculated on global financial indices
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prior to crises. The mean occupation layer is defined as

Occ(Vt) =
1

N

∑
Vi∈S

Lev(Vi,t), (6.4)

where S is the MST, Occ is mean occupation layer, Lev(Vi,t) is the level of node Vi

with respect to the central node and measures the shortest path from node Vi,t to the

central node. The central node is defined as the node with the highest degree,

weighted by its edge weights.

One of the main advantages of the MST is that it can detect clustering of highly

correlated stocks. In particular, for equity markets the MST analysis can detect

sectoral clustering using industry classification benchmarks (Onnela, Kaski, and

Kertész, 2004; Coelho et al., 2007; Pozzi, Di Matteo, and Aste, 2013). By plotting

statistics which quantify the level of sectoral clustering in rolling windows, changes

in network structure can be detected. In order to quantify the level of sectoral

clustering we calculate the modularity of the ICB industry and sub-sector groupings

over time. Modularity quantifies both the similarity of a particular community of

nodes in a network and dissimilarity with other communities which are present in

the network. Modularity (Q) is calculated as

Q =
1

2m

∑
i,j

(Aij −
Degi ∗Degj

2m
)δ(ci, cj), (6.5)

where m is the total number of edges in the network, Aij is the element of adjacency

matrix A for node i and node j, Degn is the degree of node n in the network and

δ(ci, cj) takes a value of 1 if both node i and node j belong to the same community

and 0 otherwise. An increase (decrease) in modularity in the MST indicates increased

(decreased) partitioning along industry groupings.

An increasingly dominant position in the centre of the tree can indicate that a sector is

exerting large influence on the market, and may be a key propagator of price shocks

throughout the system. We calculate the average financial sectoral degree to detect

the relative influence of the financial sector over the sample period. The average
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degree for a sector (Degz) is a measure of the centrality of a particular sector (or

industry) with respect to the rest of the network and can be described by the equation

Degz =
1

Ni,z

Nz∑
i=1

Degi,z, (6.6)

where Ni,z is the number of stocks in industry z and Degi,z is the degree of stock i in

industry z. An increase in Degz means that sector z is taking a more central role in

the network.

As there are a fixed number of vertices and edges in a minimum spanning tree for a

fully connected correlation matrix, an increase in the average degree for one sector

necessitates a decrease for another sector. Therefore, the average sectoral degree is a

relative measure of centrality in the network.

6.4.3 Time Parameter

MSTs are obtained from correlation matrices and the normalised tree length, mean

occupation layer, average sectoral degree and modularity are calculated in rolling

windows in order to visualise the evolution of stock return co-movements over the

period 2003–2010. The sample is divided into rolling windows of width T . Both T

and the step size, δT , act as smoothing parameters, with a larger value of either

parameters giving a smoother graph for the mean of the correlation matrix plotted

over time. However, once δT is relatively small the smoothing effects of this

parameter are negligible (Onnela et al., 2003a). Therefore, we choose a step size of 1

trading day to retain the maximum possible information.

The choice of T takes a little more effort. Too large a window width and changes in

the network metrics may be over-smoothed, destroying patterns in network topology

which could indicate an increase in systemic risk. Too small a window width could

lead to an unstable MST, results dominated by measurement noise, or

over-sensitivity of results to price shocks.

Previous studies have used a range of time parameters in order to study the

evolution of correlation based financial networks. Onnela et al. (2003b) analyse daily
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stock returns from the NYSE using a 1000-day rolling window. However, using a

Single Step Survival Ratio, they find that the minimum spanning tree is relatively

stable for rolling windows as low as 250 trading days. Coelho et al. (2007) calculate

the normalised tree length for the FTSE 100 using a 500-day window. The authors

recognise the trade-off between stability of the network measure and

over-smoothing. Lautier and Raynaud (2013) examine the correlation dynamics of

the energy derivatives market using a 480-day rolling window, Lee et al. (2013)

examine CDS markets with a 300-day rolling window, and Jang, Lee, and Chang

(2011) use a 250-day window for currency markets.

In order to be consistent with our analysis in Chapter 5, we choose a rolling window

width of 400 trading days for calculation of the network metrics. We follow the

methodology set out in Onnela et al. (2003b) and perform edge survival analyses to

assess the stability of the MST over time using parameter T = 400. The Single Step

Survival Ratio is defined in Onnela et al. (2003b) as the fraction of edges found in

common in two consecutive trees. It can be calculated between times t and t− δt as

σ(t) =
1

N − 1
|E(t) ∩ E(t− 1)|, (6.7)

where E(t) is the edges in the MST at time t and |...| is the number of elements in the

set.

Although we have chosen a time step of δt = 1 for our analysis, we assess the single

step survival ratio using δt = 21, or approximately one trading month to ensure

stability of our results. This means that the single step survival ratio results presented

in Figure 6.4 provide the fraction of edges in the MST which are still present in

consecutive months. The results reveal that for a 400-day window width the MST is

stable, with a mean survival ratio of above 0.75 for the S&P 500, the FTSE 100, the

NIKKEI 225 and the SBF 120. This is a close approximation to the results presented

for the NYSE in Onnela et al. (2003a) where they use a 1000-day window. Therefore,

we conclude that the 400-day window provides suitably stable results, and any

further increases in window width may provide only marginal increases in stability

with a cost of decreased sensitivity.
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(A) S&P 500 (B) FTSE 100

(C) NIKKEI 225 (D) SBF 120

FIGURE 6.4: Single step survival ratio estimated using T = 400 and δT = 21 for the
S&P 500, FTSE 100, NIKKEI 225 and SBF 120 from 2003–2010. Shaded area indicates the
crisis period, from August 2007 – March 2009. The red dashed line indicates the Lehmann

Brothers crash of the 14th of September 2008

6.5 Results

6.5.1 S&P 500 Static Analysis

In this section we present the results of a static minimum spanning tree analysis

conducted on the S&P 500. As discussed above, Wiliński et al. (2013) detected the

emergence of a superstar structure in MSTs extracted from the correlation matrix of

the Frankfurt Stock Exchange during the global financial crisis. We test this result for

the S&P 500 by plotting and assessing the degree distribution of MSTs extracted in

three discrete time periods. The static MSTs are extracted using 400-day windows for

periods up to end December 2005 (pre-crisis period), the end of August 2008 (crisis

period), and the end of December 2010 (post-crisis period)4.

Visual analysis of the MSTs in Figure 6.5 panes (a), (c) and (e) reveals strong sectoral

clustering and the presence of highly connected hubs. Financial sector stocks and

4We have tested multiple variations of these three periods, finding no significant difference in results.
The results of these variations are not presented as they are captured in the mean occupation layer results
presented in Section 5.2.
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TABLE 6.2: Percentage of time periods where central node of the S&P 500 MST has ICB in-
dustry classification equal to Financials. Estimated from in overlapping rolling windows

with T = 400 and δT = 1

Financial Sector Centrality
Date Range Aug 04–Dec 06 Jan 07–Sept 08 Sept 08–Dec 10
No. Days in Range 825 429 578
% Center 29.2% 67.4% 2.0%

industrial stocks tend to be closer to the centre of the network in the pre-crisis and

crisis periods, with oil and gas, utilities and technology sectors residing on the

peripheries of the network. Sectoral clustering in the consumer goods sector appears

to be lower than in other sectors. Interestingly, in the post-crisis period the financial

sector stocks have moved to the outer branches of the network. These initial results

indicate that in the lead-up to the global financial crisis, stocks in the financial sector

are strong propagators of shocks but once the crisis hits we detect a relative

decoupling from the financial sector.

We also find further evidence of the changing role of the financial stocks over the

period, 2003–2007, by analysing the central vertex in each time period. The central

vertex in a MST is the vertex with the highest number of connections, weighted by

the edge weights of those connections. In Table 6.2 we present the results for three

time periods. From August 2004 to December 2006 we find that central vertex comes

from the financial sector 29.2% of time periods. This increases to 67.4% of time

periods from January 2007 to September 2008. Finally, in the period from the end of

September 2008 to December 2010, the central vertex comes from the financial sector

only 2% of the time. As discussed above, due to the fixed number of nodes and edges

in the MST, the migration of the financial sector to the outer branches of the MST

indicates a relative, rather than an absolute decoupling of the sector. The increase in

influence of the financial sector during the crisis is in accordance with the results of

Musmeci, Aste, and Di Matteo (2015) for the S&P 500. Furthermore, our results are

similar to those of Aste, Shaw, and Di Matteo (2010), who found an overall

decreasing trend in the relative degree of the financial sector of the U.S stock market

from 1996–2010, with a spike in centrality over the period 2007–2008 followed by a

sharp decrease in the post-crisis period.
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In order to detect topological changes in the degree distribution of MSTs extracted

from the S&P 500 over the sample period, we fit power law distributions to the

degree distribution of the pre-crisis, crisis and post-crisis MSTs using the poweRlaw

package in R. As discussed in Chapter 2, power law network degree distributions

(scale-free networks) are ubiquitous features of complex systems due to their

inherent stability to random deletion of a node. In a power law distribution, the tail

of the distribution P (X = x) decays proportionally to x−α. The approach for fitting

the power law distribution is described in Gillespie (2015) as follows:

The power law probability mass function is given by

P (X = x) =
x−α∑∞

n=0(n+ xmin)−α
, (6.8)

where xmin identifies where the tail or scaling region of the distribution begins, α > 1

and xmin > 0 and
∑∞

n=0(n+ xmin)−α is the normalisation constant.

The slope of the power law distribution α is estimated using maximum likelihood

estimation approximation.

α̂ ≈ 1 +N

[
N∑
i=1

ln
xi

xmin − 0.5

−1
]

(6.9)

xmin is estimated using Kolmogorov-Smirnov approach as the value which

maximises the distance between the data and the fitted model CDFs. The probability

that the observed degree distribution follows a power law distribution is estimated

using a bootstrapping approach by simulating M power law distributions using the

estimated xmin and α, calculating the Kolmogorov-Smirnov value on the original and

simulated distributions, and generating a p-value. When p is large, we fail to reject

the null hypothesis that the data follows a power law distribution. For p ≈ 0 we reject

the null. In this chapter we estimate p-values using M = 100.

Panels (b), (d) and (f) of Figure 6.5 display the power law distributions fitted to our

pre-crisis, crisis and post-crisis MSTs respectively. In the pre-crisis period the degree

distribution has a clear power law tail with α = 3.26. This finding is similar to that
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outlined in Wiliński et al. (2013) who find a power law distribution with

α = 3.0± 0.21 for the pre-crisis period in the Frankfurt Stock exchange. The authors

state that this power law exponent is a good approximation to the Barabási-Albert

scale-free complex network. If we examine the network estimated for the crisis

period we find that, while there still appears to be a power law scaling region, the

extrema of the distribution are much smaller than would be expected from a power

law distribution. Moreover, the exponent for the region that does scale according to a

power law is significantly lower than in the pre-crisis period, with a value of 2.71.

This result is significantly different from that outlined in Wiliński et al. (2013), who

split the crisis period into two distinct time periods and find the emergence of a

super-connected node (superstar structure), followed by a power law distribution

decorated by large hubs. The authors state that the emergence of the superstar hub

may be an indication that a stock market crash is imminent within a few months.

However, our results show that while the emergence of such a topological structure

may be an indication of a stock market crash, it is not a necessary condition and, in

fact, a reduction in the size of the hubs in the S&P 500 degree distribution occurs

prior to the crash. Finally, in the post-crisis period, we again find a power law scaling

region with an exponent of 3.44. However, in this time period a large hub with a

degree of approximately 30 has appeared.

The results of this section demonstrate significant variation in the topological

structure of the MST in the pre-crisis, crisis and post-crisis periods. However, while

the topological structure of the MST changes during the crisis, we find no evidence of

a topological phase transition, such as the emergence of a superstar structure as

found in Wiliński et al. (2013). We further investigate this result in Section 6.2 for a

number of major stock market indices by estimating measures of centrality and

spread, such as the normalised tree length and mean occupation layer.
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(A) Pre-Crisis MST

(B) Pre-Crisis Degree Distribution

(C) Crisis MST

(D) Crisis Degree Distribution

(E) Post-Crisis MST

(F) Post-Crisis Degree Distribution

FIGURE 6.5: Static MST analysis: Pre-Crisis, Crisis and Post-Crisis periods estimated
using 400-day samples up the end of December 2005, August 2008, December 2010 re-

spectively
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6.5.2 Dynamic Network Metrics

The normalised tree length metrics for the S&P 500, FTSE 100, NIKKEI 225 and SBF

120 are presented in panels (a), (b), (c) and (d) of Figure 6.6 respectively. The graphs

present evidence of a significant decrease in the normalised tree length for the FTSE

100, NIKKEI 225 and SBF 120 beginning in 2006. This result is confirmed by the

Kendall’s tau correlation coefficients in Figure 6.7, which shows that by the start of

2007 the normalised tree length has been displaying a strong decreasing trend for

approximately 250 trading days in the three markets. The decreasing trend in the

S&P 500 begins later, in mid-2007, just before the onset of the crisis period. A second

discontinuous decrease occurs in all markets, corresponding with the stock market

crash in September 2008.

(A) S&P 500 (B) FTSE 100

(C) NIKKEI 225 (D) SBF 120

FIGURE 6.6: Normalised Tree Length estimated using T = 400 and δT = 1 for the S&P
500, FTSE 100, NIKKEI 225 and SBF 120 from 2003–2010. Shaded area indicates the crisis
period, from August 2007 – March 2009. The red dashed line indicates the Lehmann

Brothers crash of the 14th of September 2008

These trends indicate an increasing co-movement between the stocks in each market,

which begins before the onset of the crisis. This result may indicate that common

factors related to a stock market bubble are driving dynamics in the markets in the

lead-up to the crisis period. As discussed above, the decrease in the normalised tree
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length increases the probability that a shock will propagate through the system and,

can be seen as an increase in systemic risk. It is interesting that the trend in the S&P

500 begins later than in other markets, given the common wisdom that the sub-prime

crisis was the spark that ignited the global financial crisis, and the U.S. stock market,

particularly the financial sector, was the epicentre of the crisis.

The results indicate that the normalised tree length is a potential early warning signal

for stock market crashes. The indicator provides a stable yet sensitive measure of

interconnectedness in the network and, in three out of the four markets studied,

displays strong trends long before the onset of the crisis period. Furthermore, the

measure is also a useful measure for ongoing crisis monitoring. For example, the S&P

500 entered a bear phase in October 2007. Following this period, central banks of

major economies offered unprecedented levels of direct funding to banks, due to

non-existent financial sector liquidity, and brokered deals such as the March 2008

acquisition of Bear Stearns by JP Morgan Chase. While major adverse developments

in the financial sector continued, the Federal Reserve backed acquisition of Bear

Stearns and the opening of new Federal Reserve lending facilities restored some calm

to the markets (Mishkin, 2010). The normalised tree length results indicate; however,

that markets remained highly vulnerable to adverse shocks propagating through the

system, despite the actions of central banks. This vulnerability became apparent in

September 2008 with the decision to allow Lehmann Brothers to fail, when the shock

cascaded through global stock markets (see Figure 6.1).
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(A) S&P 500 (B) FTSE 100

(C) NIKKEI 225 (D) SBF 120

FIGURE 6.7: Kendall’s tau coefficient estimated for the normalised tree length with win-
dow width of 250 trading days for the S&P 500, FTSE 100, NIKKEI 225 and SBF 120

The mean occupation layer measures the average level of the tree, or the average

number of steps to the central vertex. Kaya (2015) and Wiliński et al. (2013) found a

prevalence for decreasing trends in the spread of MSTs calculated on global financial

indices prior to crises. Onnela et al. (2003b) state that an increase in the mean

occupation layer indicates an increase in diversification potential in the market.

Figure 6.8 presents the results of the mean occupation layer, with Figure 6.9

providing the Kendall’s tau coefficients for the metric.

The results indicate a decrease in the mean occupation layer for a number of the

markets either directly prior to, or during, the global financial crisis. Panel (a) of

Figure 6.9 for the S&P 500 shows a Kendall’s tau coefficient of almost -0.5 for the 250

days up to the onset of the crisis in August 2007. The trend in the FTSE 100 (panel

(b)) is even stronger with a Kendall’s tau of approximately -0.7. A second negative

trend occurs in the FTSE 100 in the 250 days leading up to the Lehmann Brothers

crash, with a Kendall’s tau of approximately -0.6. For the Nikkei 225 (panel (c)) a

negative trend occurs in the 250 days leading up to the end of Q1 2008, continuing

until the crash. There is no evidence of a strong decrease in mean occupation layer
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for the SBF 120 over the crisis period (panel (d)).

(A) S&P 500 (B) FTSE 100

(C) NIKKEI 225 (D) SBF 120

FIGURE 6.8: Mean Occupation Layer estimated using T = 400 and δT = 1 for the S&P
500, FTSE 100, NIKKEI 225 and SBF 120 from 2003–2010. Shaded area indicates the crisis
period, from August 2007 – March 2009. The red dashed line indicates the Lehmann

Brothers crash of the 14th of September 2008

While there is some evidence of decreasing trends in the mean occupation layer in

the periods up to and including the crisis, with the exception of the FTSE 100,

stronger negative trends occur in the mean occupation layer in non-crisis periods

than in crisis periods. Moreover, visual analysis of Figure 6.8 reveals that the Mean

Occupation Layer is quite volatile over the period of analysis, with large peaks and

troughs before, during and after the crisis period. Thus, we find that the mean

occupation layer may be a less informative indicator of systemic risk than the

normalised tree length.
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(A) S&P 500 (B) FTSE 100

(C) NIKKEI 225 (D) SBF 120

FIGURE 6.9: Kendall’s tau coefficient estimated for the mean occupation layer with win-
dow width of 250 trading days for the S&P 500, FTSE 100, NIKKEI 225 and SBF 120

In Figure 6.10, we examine the modularity of the ICB industry and sub-sector

groupings. As outlined in Section 6.4, the modularity of a network community is a

measure of similarity of the nodes within that community and dissimilarity with

other communities within the network. Musmeci, Aste, and Di Matteo (2015) found

that for the S&P 500, the informativeness of the ICB industry and sub-sector

groupings decreased in the lead-up to the financial crisis, recovering somewhat after

the crisis. We further investigate this result for our four markets of interest to

determine if this is a general trend in financial markets in the lead-up to the financial

crisis, and thus, a potential indicator of systemic risk. Our hypothesis is that a

decrease in the degree to which stocks from the same sector cluster together may

indicate bubble dynamics, where the market factors, such as risk aversion or credit

availability, become more important than sector specific factors.
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(A) S&P 500 (B) FTSE 100

(C) Nikkei 225 (D) SBF 120

FIGURE 6.10: ICB Industry and sub-sector modularity estimated using T = 400 and
δT = 1 for the S&P 500, FTSE 100, NIKKEI 225 and SBF 120 from 2003–2010. Shaded area
indicates the crisis period, from August 2007 – March 2009. The red dashed line indicates

the Lehmann Brothers crash of the 14th of September 2008

The results presented in Figure 6.10 for the S&P 500 broadly correspond to those

presented in Musmeci, Aste, and Di Matteo (2015) for both industry and sub-sector

groupings. Examining the Kendall’s tau coefficient in Figure 6.11 for the industry

level grouping, we can see a strong decreasing trend in the period up to Q4 2006,

followed by a short levelling out period, and another strong decreasing trend up to

the end of 2007. From the onset of the crisis there is a strong recovery in modularity,

particularly at industry level. The results for the FTSE 100 display similar trends to

those for the S&P 500, indicating similar underlying dynamics in the market. No

such decrease is present for the NIKKEI 225 or the SBF 120, with an overall increase

in industry modularity in the lead-up to the crisis. All four markets experience a

sharp, short lived decrease in modularity with the onset of the crisis in August 2007.
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(A) S&P 500 (B) FTSE 100

(C) NIKKEI 225 (D) SBF 120

FIGURE 6.11: Kendall’s tau coefficient estimated for the ICB industry and sub-sector
modularity with window width of 250 trading days for the S&P 500, FTSE 100, NIKKEI

225 and SBF 120

We also detect a divergence in trends between the S&P 500 and the FTSE 100 on one

hand, and the NIKKE 225 and SBF 120 on the other, in terms of the relative influence

of the financial sector in the market. The average financial sector degree displayed in

Figure 6.12 indicates the relative influence of the financial sector in the MST, with

Kendall’s tau coefficients displayed in Figure 6.13. After an initial decrease in

financial sector centrality for the S&P 500 between 2004 and late 2005, the average

degree of the financial sector trends upwards and reaches a peak in 2007,

corresponding to the onset of the financial crisis (panel (a)). A similar trend is

detectable for the FTSE 100 in panel (b). This trend may indicate stress from the

financial sector increasingly being transmitted to the rest of the market. We detect no

corresponding increase in financial sector centrality for MSTs estimated for the

NIKKEI 225 (panel (c)) or SBF 120 (panel (d)). Interestingly, all four stock markets

experience a migration of the financial sector to the outer branches of the MST in the

period following the Lehmann Brothers crash. This reflects the global nature of the

impairment of the financial sector in this period, which may have recovered slower

relative to other sectors, due the requirement for significant deleveraging and
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disposal of toxic assets.

(A) S&P 500 (B) FTSE 100

(C) NIKKEI 225 (D) SBF 120

FIGURE 6.12: Average Financial Sector Degree estimated using T = 400 and δT = 1 for
the S&P 500, FTSE 100, NIKKEI 225 and SBF 120 from 2003–2010. Shaded area indicates
the crisis period, from August 2007 – March 2009. The red dashed line indicates the

Lehmann Brothers crash of the 14th of September 2008

The negative trends in modularity in both the S&P 500 and the FTSE 100 broadly

correspond to increases in financial sector centrality in those markets. This is

evidenced by the fact that peaks in the Kendall’s tau coefficients for the average

financial sector degree occur in approximately the same time periods as the troughs

in modularity in both markets. After the onset of the crisis in August 2007,

modularity begins to increase and financial sector centrality begins to decrease. There

is a -0.88 Pearson’s correlation over the entire sample period between modularity and

average financial sector degree for the S&P 500 and -0.67 for the FTSE 100. This is

contrasted with a correlation of 0.3 for the SBF 120 and 0.13 for the NIKKEI 225.

While this does not provide direct evidence of a negative causal relationship between

the network measures, it provides an interesting avenue for future research.
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(A) S&P 500 (B) FTSE 100

(C) NIKKEI 225 (D) SBF 120

FIGURE 6.13: Kendall’s tau coefficient estimated for the average financial sector degree
with window width of 250 trading days for the S&P 500, FTSE 100, NIKKEI 225 and SBF

120

One potential hypothesis is that the increase in financial sector influence, coupled

with decreasing modularity, is related to financial factors, such as credit availability,

becoming more important than sector specific factors. As a narrative, the U.S.

mortgage market peaked in mid-2006, followed by a steep decline, causing fears

regarding U.S. banks exposures to sub-prime mortgages. This led to a reduction in

interbank lending and general tighter credit conditions. The results presented for

financial sector centrality indicates that tightening credit conditions may have been

felt first in the U.S. and U.K. stock markets, with shocks being transmitted to

non-financial sectors. If this is the case, then the average financial sector degree and

modularity of industry groupings may provide useful early warning signals for

determining when financial sector impairment becomes systemic, with spillover

effects to the real economy. The fact that Financials comprise the largest component

of the FTSE 100 and S&P 500 samples but only the third and fifth largest in the SBF

120 and NIKKEI 225 may contribute to the divergence in results discussed above.

However, further research is required into the role of the financial sector in pre-crisis

dynamics in all four stock markets to determine why trends are detectable in only
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two out of the four markets in the lead-up to the crisis.

6.6 Conclusions

Detecting systemic risk and instabilities in financial markets requires a multifaceted

approach due to the complex nature of financial markets. In this chapter we assessed

dynamic minimum spanning tree analysis of stock markets as a potential method for

the detection of systemic risk. Due to wealth effects, financial accelerator effects and

their use in credit risk estimation, equities make a natural candidate for detecting

developments in financial markets with potential spillover effects to the real

economy. Moreover, minimum spanning trees, which extract the shortest and most

probable path through which a shock can pass through a system, are capable of

detecting sectoral clustering in stock markets.

Our analysis reveals a large degree of variability in the topological structure of MSTs

estimated from the correlation networks of the S&P 500, FTSE 100, NIKKEI 225 and

SBF 120, as evidenced by a large number of peaks and troughs in measures of

network spread. However, we find strong evidence that a measure of overall

interconnectedness of the MST, the normalised tree length, provides a clear early

warning signal for the global financial crisis in all four markets. Furthermore, we find

some evidence of early warning signals from the average financial sector degree, and

ICB industry grouping modularity for the S&P 500 and FTSE 100. These signals are

not present for the NIKKEI 225 and SBF 120; however, the absence of such signals

may be related to the role of the financial sector in pre-crisis market dynamics. We

propose further research into this result to assess the suitability of these measures as

leading indicators of the transmission of shocks from the financial sector to

non-financial sectors.

The results related to the increasing interconnectedness of the network in the

pre-crisis period are particularly interesting when framed in the light of previous

literature on phase transitions in complex networks. As discussed in Chapter 2, May

(1972) and Haldane (2009) suggest that the level of interconnectedness, or strength of

connections, in a complex network can reach a critical level, causing a phase
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transition in the network. Our results highlight a decreasing trend in the normalised

tree length for all four market under analysis in the build-up to the crisis. This could

potentially indicate that a critical level of interconnectedness in the financial system

was reached in 2007–2008, causing a phase transition in financial markets that

materialised as the global financial crisis.

Overall our results indicate that dynamic minimum spanning tree analysis provides

an intuitive method for assessing financial fragility and systemic risk, and would

form a useful addition to the toolbox of financial regulators and supervisors alike.

Used in isolation it cannot provide direct evidence of the presence of asset bubbles;

however, it can provide a measure of the dominance of sectors within the market.

Furthermore, MST analysis can detect increasing interconnectedness, and the

increased transmission of shocks between sectors, all of which may contribute to a

financial system which is more vulnerable to a systemic event. Finally, our results

indicate that methods which take into account the non-stationary nature of

dependence structures in financial markets can add significant value to the

development of early warning signals of financial crises.

141





Chapter 7

Conclusions

7.1 Overview of Thesis and Contributions

The global financial crisis of 2007–2009 highlighted the need for the development of

new approaches in the measurement of risk in financial markets. Many common risk

models relied on the linear stochastic modelling framework, which assumes that

financial data depends only on past observations of itself and other market data

(Danıelsson, 2002). Such models utilised assumptions, such as IID normally

distributed modelling error terms, stationarity of empirical distributions and

co-dependence structures, and that when taken on aggregate the actions of market

participants are random and cannot influence the market. Chapter 1 of this thesis

outlined a number of stylised facts for financial data, indicating that these

assumptions do not always hold, and may lead to an underestimation of risk.

Empirical research has found fat tailed distributions with power law tails,

long-memory dependence structures, and non-stationarity in variance and

covariance across many asset classes and regions (Cont, 2001). Combining such

features with the fact that financial markets tend to undergo abrupt price changes,

remaining in a recessionary state for a prolonged period, points to the need for an

alternate framework for risk measurement and early detection of financial crises.

Chapter 2 outlines an alternate framework for the analysis of risk in financial

markets. This approach is to treat financial markets as complex systems, i.e. systems

in which the interaction of the elements of the system at a micro level leads to very

different behaviour at higher levels of aggregation. This approach is very different
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from the linear stochastic framework in that it allows for endogenous dynamical

behaviour (Arthur, 1999). Market participants, in general, are faced with uncertainty

regarding the outcomes of their actions, due to limited information and limited

cognitive ability (Simon, 1957). This leads to the use of heuristics and imitation of

other market participants (Tversky and Kahneman, 1975; Shiller, 2002). As a result,

market participants are constantly adapting and reacting to the outcomes of their

own actions and the actions of other market participants. This constant cycle of

reacting and adaption can lead to endogenously driven fluctuations, and have been

related to bubble dynamics in financial markets.

When endogenous dynamics, such as positive feedback loops between asset price

increases and investor behaviour, push the system towards a critical point, changes

in underlying parameters can lead to structural change in system and regime shifts

between alternate equilibria. In Chapter 2, we outlined previous literature that found

evidence of emergent phenomena in financial markets, such as log-periodic

oscillations, critical slowing down, power law distributions and scale free networks.

These phenomena, which are common across many asset classes and time periods,

provide evidence and motivation for the study of financial markets as complex

dynamical systems and financial crises as critical phenomena.

It is clear from the discussion in Chapter 2 that financial markets are highly complex

systems, likely displaying path dependence, making it difficult to extrapolate from

past behaviour. However, the emergence of behaviours or trends which are

ubiquitous in complex systems motivates the objectives of this thesis. The central

research question of this thesis is: Can we exploit certain universal features of

systems approaching a regime shift to detect the build-up of instabilities in financial

markets and generate consistent, reliable early warning indicators of financial crises?

This central research question is in turn broken down into three further research

objectives, which are addressed in Chapter 4 – Chapter 6 of this thesis as follows:

1. To determine if nonlinear dependence structure are present in financial time

series in the lead-up to financial crises.

2. To investigate if early warning signals of regime shifts were present prior to the
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Eurozone sovereign debt crisis and, if so, whether or not these signals can be

used as robust indicators of financial crises in general.

3. To examine the usefulness of measures of time-varying correlation network

topology of equity returns as a measure of systemic risk in financial markets.

In answer to the central research question, we have found a number of promising

early warning indicators for financial crises in stock and sovereign bond markets. For

example, Chapter 5 of this thesis finds evidence of critical slowing down in sovereign

bond markets in the lead up-to the Eurozone sovereign debt crisis, and Chapter 6

finds that a topological shrinking of MSTs estimated from the correlation network of

global stock markets prior to the global financial crisis. We discuss the contributions

of each of the empirical chapters (Chapter 4 – Chapter 6) below.

The objective of Chapter 4 is to determine if we can detect nonlinearity in financial

time series in the periods directly preceding financial crises. The motivation is due to

the fact that regime shifts are triggered by strong nonlinear responses in a system

pushing it towards a critical threshold (Dakos et al., 2012b). Moreover, bifurcations

cannot occur in purely linear systems. Our primary contribution is to investigate the

presence of nonlinear dependence structures in stock index and sovereign bond time

series in the periods leading up to the global financial crisis and the sovereign debt

crisis respectively. Our results find mixed evidence for weak nonlinear dependence

in a number of the financial time series under investigation. The evidence is strongest

for sovereign bond markets, with stock markets yielding largely inconclusive or

negative results.

The BDS test (Brock, Dechert, and Scheinkman, 1987), applied to log-squared

GARCH residuals of the stock and bond time series, displayed evidence of

nonlinearity in the Greek, Irish and Portuguese bond data for different sample sizes.

No evidence of nonlinear dependence was found in the Dow Jones, FTSE 100 or

NIKKEI 225. The results for the Irish and Portuguese bond markets appear to be

confirmed by STAP surrogate data tests (Kugiumtzis, 2002a). However, insignificant

results for the Greek market indicate that the significant result in the BDS test may be

due to remaining linear dependence following the application of the GARCH model.
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The STAP methodology may have more power than the BDS test to detect

nonlinearity in stock market indices, with some significant nonlinear serial

dependence detected for the Dow Jones, the FTSE 100 and the NIKKEI 225. When

combined with the results of the BDS test, this indicates that the signal to noise ratio

for stock market indices may be weaker than for sovereign bond yields. Finally, the

application of PPS surrogate data tests (Small, Yu, and Harrison, 2001) directly to the

log-returns finds no significant results for bond series and only weak evidence of

nonlinear dependence in the NIKKEI 225. The PPS method is used due to the fact

that it can capture volatility clustering effects and does not have to be applied to

GARCH residuals. However, it may not have the power to detect weak nonlinearity

in noisy time series.

A second key finding of this chapter is the difficulty providing robust results when

testing for nonlinearity in financial time series. This is due to the finite, noisy nature

of financial data. Where the nonlinear signal in the data is weak relative to level of

noise, or if the data generating process is high dimensional deterministic, tests for

nonlinear dependence may not have sensitivity to detect the signal in the data. While

the results of Chapter 4 are mixed, we do find some evidence of weak nonlinearity in

the data, particularly for sovereign debt markets. Therefore, in Chapter 5 we

investigate if nonlinear responses in the system pushes the market towards a critical

threshold, where instabilities in the system build-up over time and lead to an abrupt

regime shift.

Recently, the Eurozone debt crisis sparked conversation surrounding the possibility

of multiple equilibria in sovereign bond markets, particularly in a monetary union

where the sovereigns do not have the guarantee of a lender of last resort (De Grauwe,

2011). Comparisons have been made between the sovereign debt crisis and the

self-fulfilling expectations framework set out in second-generation currency models.

In such models, multiple equilibria are possible in the market for a particular range

of economic fundamentals. In effect, a bifurcation occurs when economic

fundamentals enter a certain range (Jeanne, 1997). Motivated by the recent literature,

and our findings in Chapter 4 regarding evidence of nonlinear dependence in

sovereign bond markets, we test for evidence of CSD in the sovereign debt markets

146



7.1. Overview of Thesis and Contributions

of Greece, Ireland and Portugal.

The primary finding of Chapter 5, and our contribution to the literature, is to present

evidence of the presence of CSD in the lead-up to the debt crisis for Greek, Irish and

Portuguese sovereign bond yield returns. CSD has been used as a leading indicator

of critical transitions in many real world dynamical systems (Scheffer et al., 2009). In

all three markets we detect evidence of strong positive, statistically significant trends

in ACF1, AR1 and SD. The significant trends, coupled with the fact that all three

markets experienced large increases in yields, and linger in the high yield state for a

prolonged period of time, indicates that CSD may provide a useful indicator of

impending transitions in sovereign debt markets.

However, we find that the use of ACF1 as a leading indicator of critical transitions in

stock markets reveals a propensity for false positive signals. This result confirms

recent findings in Guttal et al. (2016). This secondary finding is interesting when

coupled with the findings of Chapter 4. The mixed results of the tests for

nonlinearity, coupled with the finding that CSD is not a useful indicator for crises in

stock market indices, points to the need for a different approach. Price changes in

stock indices are generally a weighted average of the changes in price of the stocks in

the underlying market. It is possible that the aggregation method washes out

interesting dynamics in the underlying stock returns. Therefore, in Chapter 6 we go

to a lower level of aggregation, investigating changes in correlation network

topology as a potential early warning indicator of stock market crashes.

In Chapter 6 we investigate dynamic minimum spanning tree analysis of stock

markets as a potential method for the detection of systemic risk. Our primary

contribution to the literature is to apply a range of different measures of changing

network topology to the components of four stock market indices, the S&P 500, the

FTSE 100, the NIKKEI 225 and the SBF 120. The motivation for the empirical

methodology stems from results of network analysis in other complex systems,

which find that the interconnectedness of a network can reach a critical level of

interconnectedness and cause a phase transition in the system. For example, May

(1972) and Haldane (2009) suggest that the level of interconnectedness, or strength of

connections, in a complex network can reach a critical level, causing a phase
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transition in the network. Furthermore, we assess whether a number of recent results

related to topological change of correlation networks are generalisable across

multiple markets, thereby providing us with consistent, reliable early warning

signals of financial crises.

The primary finding of Chapter 6 is a strong decreasing trend in the normalised tree

length for all four markets under analysis in the build-up to the crisis. This provides

some support for the theory that a critical level of interconnectedness was reached in

the financial system, causing a phase transition in financial markets. Furthermore, we

find some evidence of continuous change in the average financial sector degree and

ICB industry grouping modularity for the S&P 500 and FTSE 100 in the lead-up to the

financial crisis. While these signals were not present in the SBF 120 and the NIKKEI

225, we suggest that this may be due to the less significant role of the financial sector

in these markets. If one were to take the dominance of the financial sector as a proxy

for credit availability, or credit driven growth, an increase in the centrality of the

financial sector, coupled with a decrease in sectoral modularity, may be an indication

that systematic factors are becoming more important in asset price dynamics.

Another key finding of this chapter is that the S&P 500 displays power law degree

distributions in the pre-crisis period, similar to the results found in Wiliński et al.

(2013) for the Frankfurt Stock Exchange. However, we do not detect the same sharp

decrease in the spread of the network or the emergence of a super-connected hub that

is highlighted for the German market. This indicates that the dynamics of the crisis

may be different in the two markets.

When taken on aggregate, the results highlighted in the empirical chapters provide a

number of key contributions to the literature. Firstly, we highlight the challenge of

detecting nonlinearity in financial markets, and the strong dependence on the

methods and parameters used. More importantly, the results indicate that when

conducting risk analysis of financial markets, the level of aggregation at which we

apply our methodologies can play a key role in the success of our results. The results

of the Chapter 4 and Chapter 5 indicate nonlinearity and early warning signals of

critical transitions in sovereign bond markets in the lead-up to the Eurozone

sovereign debt crisis. However, the results are either insignificant or mixed for stock
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market indices. Reducing the level of aggregation to the individual components of

the stock market indices, we find interesting trends and potential early warning

indicators for the financial crisis. Finally, the results indicate that moving beyond the

linear stochastic framework and applying methods which can capture evolving,

complex interactions, and resultant emergent patterns, adds significant value in the

development of early warning signals of financial crises.

7.2 Limitations

While we have attempted to ensure the robustness of results and suitability of

methodologies utilised in this thesis, there are a number of limitations which must be

discussed. In Chapter 4, as we have already discussed, the methodologies for

detecting nonlinearity in financial time series are limited due to the finite, noisy

nature of such series. Many methods which are prevalent in nonlinear time series

analysis struggle to distinguish between stochastic and deterministic dynamics when

the signal to noise ratio is low. We have attempted to overcome this limitation by

applying a range of different methods, for example by applying BDS testing, as well

as STAP and PPS surrogate data analysis. However, each of the methods has its own

limitations. The BDS and STAP tests are both applied to model residuals, which has

the potential to either bleach interesting dynamics or add spurious dependence

structure to the data. The PPS test was applied directly to the log-returns; however, it

may not have the power to distinguish between time series with a weakly nonlinear

deterministic component and one which is purely stochastic.

In Chapter 5, we assess the possibility of a fold catastrophe (or saddle node

bifurcation) occurring in financial markets in the lead-up to the Eurozone sovereign

debt crisis. We apply this methodology due to the qualitative similarities between

these bifurcations and financial crises. The CSD methodology indicates dynamics are

present which support the hypothesis that sovereign bond markets were

approaching a critical transition in the periods leading up to the crisis. However, as

discussed in Boettiger, Ross, and Hastings (2013), CSD can occur prior to other types

of transitions, including continuous transitions. In order to get around this limitation
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we have used the classification system outlined in Boettiger, Ross, and Hastings

(2013) to assess whether a saddle node bifurcation has occurred. This involves the

use of judgement and, as such, has the potential for errors.

Finally, in Chapter 6 we assess changes in correlation network topology as a potential

indicator of systemic risk. In this chapter we use Pearson’s linear correlation

coefficient to measure the co-movement of log-returns. Linear correlation coefficients

may not detect the presence on nonlinear dependence between the stocks. A

methodology such as mutual information, which captures both linear and nonlinear

dependencies may also be useful in this regard. We use linear correlation due to the

large body of literature which support its use in analysis of correlation network

topology. However, we recognise that ignoring nonlinear dependencies is a potential

limitation of this work. Finally, due to the unavailability of data for prices of stocks

which have been delisted from the stock indices under examination, an unavoidable

survivorship bias exists for the results of Chapter 6.

7.3 Future Research

This thesis has provided a number of important avenues for future research. Chapter

4 highlights the difficulty in detecting nonlinearity in financial time series due to their

finite, noisy nature. A number of methods are available, such as wavelet methods, for

reducing the noise levels in time series, while preserving any deterministic

components. We propose future research to assess the suitability of these methods for

financial time series. Significant research is required in this area as many noise

reduction methodologies are known to introduce spurious determinism. Where a

suitable noise reduction methodology is found, we propose that further research be

conducted into the presence of nonlinearity in filtered financial time series in the

build-up to crisis periods. This may provide stronger evidence for, or against, the

presence of nonlinearity in financial markets in the lead-up to crisis periods.

Chapter 5 of this thesis provides evidence that Eurozone sovereign debt crisis may be

explained as a system passing through a bifurcation point, where some underlying

parameter (such as the level of economic fundamentals) reaches a critical threshold
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and causes the system to switch between alternate equilibria. Second generation

currency models have recently been applied to explain sovereign debt crises. These

models allow for a range of values for economic fundamentals which lead to

multiple equilibria in bond markets. When fundamentals pass a critical value, the

system collapses to a single, high yield equilibrium state. However, these models do

not explicitly apply the framework of bifurcations to explain price dynamics as the

transition is approached. We propose future research into the development of

modelling approaches which directly apply bifurcation theory to model the

dynamics sovereign debt crises. Such an approach would leverage the large body of

literature in the ecological and other sciences that have successfully applied

bifurcation theory to model regime shifts in complex systems.

In Chapter 6 we highlight an interesting result where the S&P 500 and the FTSE 100

display an apparent relationship between sectoral modularity and financials sector

centrality. We hypothesise that the increase in financial sector influence, coupled with

decreasing modularity, is related to systematic factors, such as credit availability,

becoming more important than sector specific factors. The same relationship is not

present in the Nikkei 225 or the SBF 120, where the financial sector is a less sizeable

component of the overall index. We propose further research into the role of the

financial sector in pre-crisis stock market dynamics, to determine if the apparent

relationship between financial sector centrality and modularity can be used as an

early warning signal for credit bubbles in markets with dominant financial sectors.

151





Appendix A

Appendix Chapter 4

TABLE A.1: BDS Statistic for Log Squared EGARCH Residuals, N=500

m Dow FTSE Nikkei Gre Irl Port
ε/σ = 0.5

2 -1.21 -1.06 0.28 1.72 -2.15 0.28
3 -1.39 -1.02 -0.36 1.54 -2.43** 0.62
4 -1.33 -0.4 -0.69 2.05 -2.96** 1.19
5 -1.88 -0.09 0.43 1.45 -2.36 1.23
6 -2.09 -0.5 0.69 1.04 -2.26 0.1
7 -2.21 -0.57 -0.54 0.76 -2.03 0.06

ε/σ = 1
2 -1.38 -0.71 -0.35 1.95* -1.44 -0.1
3 -1.27 -0.53 -1.01 2.28** -2.02** 0.07
4 -1.03 0.12 -1.02 2.45** -1.97* -0.02
5 -1.52 0.57 -0.7 2.18* -1.92* -0.1
6 -1.72 0.61 -0.69 1.90* -1.97* -0.29
7 -1.762* 0.39 -0.37 1.63 -1.69 -0.56

ε/σ = 1.5
2 -0.35 -0.87 -0.99 2.01* -0.92 -0.67
3 -0.55 -0.16 -1.51 2.49** -1.57 -0.48
4 -0.41 0 -1.56 2.54** -1.80* -0.68
5 -0.73 -0.03 -1.26 2.24** -1.71* -0.87
6 -0.86 -0.22 -1.04 1.99* -1.59 -1.09
7 -0.87 -0.42 -0.86 1.79* -1.2 -1.3

ε/σ = 2
2 0.44 -0.47 -0.69 1.52 -0.51 -0.47
3 -0.03 0.41 -1.2 1.89* -0.91 -0.17
4 0.03 0.26 -1.38 1.69 -1.32 -0.38
5 -0.26 -0.06 -1.2 1.24 -1.33 -0.58
6 -0.44 -0.4 -1.01 1.03 -1.21 -0.9
7 -0.43 -0.59 -0.86 0.88 -0.91 -1.12
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TABLE A.2: BDS Statistic for Log Squared EGARCH Residuals, N=1000

m Dow FTSE Nikkei Gre Irl Port
ε/σ = 0.5

2 -0.74 -1.22 0.31 2.13* -1.04 0.17
3 -1.26 -1.04 -0.38 2.02* -1.71 0.16
4 -1.12 -0.59 -0.14 2.70** -1.16 0.37
5 -1.4 -0.57 0.21 2.68* -1.08 0.17
6 -1.44 -0.53 -0.03 2.4 -1.06 -0.04
7 -0.81 -0.45 -0.54 2.17 -1.36 -0.65

ε/σ = 1
2 -0.85 -0.83 0.04 1.93* -0.8 0.4
3 -0.68 -0.41 -0.42 2.13** -1.61 0.11
4 -0.24 -0.04 -0.1 2.88*** -1.42 0.16
5 -0.22 0.17 0.35 3.00*** -1.02 0.27
6 -0.27 0.13 0.34 3.10*** -0.71 0.37
7 -0.34 -0.01 0.52 3.04** -0.49 0.32

ε/σ = 1.5
2 -0.3 -0.57 -0.04 1.97* -0.79 0.93
3 0.09 0.3 -0.3 2.39** -1.28 0.81
4 0.49 0.66 -0.29 2.79*** -1.11 0.83
5 0.43 0.66 -0.07 2.73** -0.75 0.82
6 0.28 0.41 -0.05 2.74** -0.38 0.83
7 0.12 0.17 0.06 2.71** -0.15 0.84

ε/σ = 2
2 0.14 -0.47 0.05 1.97* -0.23 1.80*
3 0.59 0.79 0.01 2.43** -0.56 1.66
4 0.81 0.95 0.07 2.55** -0.52 1.49
5 0.68 0.75 0.26 2.40** -0.3 1.31
6 0.49 0.5 0.23 2.29** -0.07 1.2
7 0.33 0.32 0.33 2.30** 0.07 1.17
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TABLE A.3: BDS Statistic for Log Squared EGARCH Residuals, N=2500

m Dow FTSE Nikkei Gre Irl Port
ε/σ = 0.5

2 -0.2 -0.87 -0.03 0.09 -0.28 2.16**
3 -0.91 -1 -0.12 0.57 -0.93 2.74**
4 -0.82 -0.83 0.16 1.04 -1.19 2.69**
5 -1.11 -0.61 0.99 1.41 -0.99 3.15**
6 -1.11 -0.55 0.82 1.58 -0.73 3.56**
7 -0.93 -0.38 0.79 1.56 -0.25 4.27**

ε/σ = 1
2 -0.03 -0.39 0.1 0.52 0.18 2.79***
3 -0.37 -0.43 -0.06 0.94 -0.67 3.03***
4 -0.19 -0.31 0.25 1.19 -0.87 2.94***
5 -0.22 0 0.8 1.43 -0.54 3.21***
6 -0.2 0.15 0.92 1.76* -0.37 3.30***
7 -0.16 0.27 1.21 1.81* -0.31 3.20***

ε/σ = 1.5
2 0.68 0.07 -0.22 1.02 0.59 3.55***
3 0.42 0.39 -0.3 1.11 -0.27 3.81***
4 0.69 0.6 -0.19 1.15 -0.48 3.80***
5 0.74 0.77 0.16 1.21 -0.31 3.93***
6 0.76 0.89 0.28 1.55 -0.25 3.88***
7 0.77 1.09 0.48 1.6 -0.28 3.71***

ε/σ = 2
2 1.83* 0.11 -0.67 1.45 1 3.08***
3 1.69 0.56 -0.59 1.27 0.37 3.58***
4 1.93* 0.74 -0.64 1.18 0.29 3.78***
5 1.97* 0.72 -0.41 1.11 0.39 3.94***
6 1.86* 0.8 -0.27 1.26 0.33 3.84***
7 1.76* 0.99 -0.09 1.19 0.28 3.63***
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TABLE A.4: IAAFT Surrogate p-values for the nonlinear prediction error (NLPE), algorithmic complexity (Comp), Pearson’s cumulative mutual information (Pear) and
cumulative mutual information (Mut).1000 surrogates are used in testing. 10% significance is highlighted in yellow, 5% in orange and 1% in red.

Dow Jones FTSE NIKKEI
N NLPE Comp Pear Mut NLPE Comp Pear Mut NLPE Comp Pear Mut

500 0.16 0.05 0.63 0.01 0.13 0.52 0.56 0.58 0.27 0.47 0.80 0.01
1000 0.16 0.96 0.77 0.42 0.27 0.82 0.72 0.94 0.41 0.64 0.41 0.85
2500 0.43 0.73 0.53 0.10 0.65 0.10 0.66 0.03 0.69 0.34 0.97 0.02

Greece Ireland Portugal
N NLPE Comp Pear Mut NLPE Comp Pear Mut NLPE Comp Pear Mut

500 0.19 0.99 0.76 0.58 0.04 0.52 0.97 0.73 1.00 0.16 0.01 0.68
1000 0.71 0.71 0.77 0.73 0.24 0.83 0.70 0.52 0.96 0.35 0.13 0.36
2500 0.93 0.66 0.61 0.99 0.55 0.37 0.23 0.51 0.59 0.97 0.85 0.00
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